
-
Title: Integers (Construction)
-
Series: Start Learning Numbers
-
Parent Series: Start Learning Mathematics
-
YouTube-Title: Start Learning Numbers 6 | Integers (Construction)
-
Bright video: https://youtu.be/0DlHkDYkKSg
-
Dark video: https://youtu.be/EtbRI4jC0mA
-
Ad-free video: Watch Vimeo video
-
Original video for YT-Members (bright): https://youtu.be/hafvF_V6Go0
-
Original video for YT-Members (dark): https://youtu.be/E5LAeuacx3c
-
Forum: Ask a question in Mattermost
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: sln06_sub_eng.srt missing
-
Download bright video: Link on Vimeo
-
Download dark video: Link on Vimeo
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is not a property of an equivalence relation?
A1: linear
A2: reflexive
A3: symmetric
A4: transitive
Q2: How is the equivalence class for the element $(3,3)$ defined?
A1: $[(3,3)] := { (x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid (x,y) \sim (3,3) }$
A2: $[(3,3)] := { (x,x) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid (x,x) \sim (3,3) }$
A3: $[(3,3)] := { x \in \mathbb{N}_0 x \sim (3,3) }$
A4: $[(3,3)] := { (x,y) \in \mathbb{N} \times \mathbb{N}_0 \mid (x,y) \sim (2,3) }$
-
Last update: 2024-10