• Title: Cauchy Principal Value

  • Series: Real Analysis

  • Chapter: Riemann Integral

  • YouTube-Title: Real Analysis 64 | Cauchy Principal Value

  • Bright video: https://youtu.be/0SP2b0nFpwI

  • Dark video: https://youtu.be/wlg0n5_t_6M

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra64_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: [0,2]\setminus{1} \rightarrow [0,1]$ be an unbounded function. What is the correct definition of the improper Riemann integral $$ \int_0^2 f(x), dx$$

    A1: $$ \lim_{\varepsilon \searrow 0 } \int_0^{ 1 - \varepsilon} f(x), dx + \lim_{\varepsilon \searrow 0 } \int_{ 1 + \varepsilon}^{2} f(x), dx $$

    A2: $$ \lim_{\varepsilon \searrow 0 } \int_0^{ 2 - \varepsilon} f(x), dx + \lim_{\varepsilon \searrow 0 } \int_{ 1 + \varepsilon}^{2} f(x), dx $$

    A3: $$ \lim_{\varepsilon \searrow 0 } \int_0^{ 2 - \varepsilon} f(x), dx + \lim_{\varepsilon \searrow 0 } \int_{ 2 + \varepsilon}^{2} f(x), dx $$

    A4: $$ \lim_{\varepsilon \searrow 0 } \int_0^{ 2 - \varepsilon} f(x), dx + \lim_{\varepsilon \searrow 0 } \int_{\varepsilon}^{2} f(x), dx $$

    Q2: $f: [-1,1] \setminus {0} \rightarrow [0,1]$ be given by $ f(x) = \frac{1}{x}$. Does the improper Riemann integral exist?

    A1: Yes!

    A2: No!

    Q3: $f: [-1,1] \setminus {0} \rightarrow [0,1]$ be given by $ f(x) = \frac{1}{x}$. Does the Cauchy principal value exist?

    A1: Yes!

    A2: No!

    Q4: $f: [-1,1] \setminus {0} \rightarrow [0,1]$ be given by $ f(x) = \frac{1}{x^3}$. What is the Cauchy principal value $$\mathrm{p.v.} \int_{-1}^1 \frac{1}{x^3} , dx $$ of this function?

    A1: $0$

    A2: $1$

    A3: $\frac{1}{2}$

    A4: $\frac{1}{3}$

    A5: $3$

  • Last update: 2024-10

  • Back to overview page