-
Title: Application for Taylor’s Theorem
-
Series: Real Analysis
-
Chapter: Differentiable Functions
-
YouTube-Title: Real Analysis 46 | Application for Taylor’s Theorem
-
Bright video: https://youtu.be/qmxY1DKx-vA
-
Dark video: https://youtu.be/7tgCjjvrZSE
-
Ad-free video: Watch Vimeo video
-
Original video for YT-Members (bright): https://youtu.be/zRoyHrMNOO8
-
Original video for YT-Members (dark): https://youtu.be/fnI_JAVsMpQ
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Exercise Download PDF sheets
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra46_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the logarithm function. What is the $n$-th derivative of $\log$?
A1: $\frac{1}{x}$
A2: $\frac{1}{x^n}$
A3: $\frac{n!}{x^n}$
A4: $(-1)^{n-1} \frac{(n-1)!}{x^n}$
A5: $-\frac{(n-1)!}{x^n}$
Q2: Let $f \colon \mathbb{R} \rightarrow \mathbb{R}$ be 3-times differentiable. Let $T_2(h)$ be the $2$nd order Taylor polynomial with expansion point $x_0 = 0$. What do we get when we calculate $f(0.2) - T_2(0.2)$?
A1: $R_2(0)$
A2: $R_3(0)$
A3: $R_2(0.2)$
A4: $f(0.2)$
A5: $f(0.5)$
A6: $f(0)$
Q3: Let $f \colon \mathbb{R} \rightarrow \mathbb{R}$ be 3-times differentiable. Let $T_2(h)$ be the $2$nd order Taylor polynomial with expansion point $x_0 = 0$. How can we show how good the approximation $T_2(0.2)$ for the value $f(0.2)$ is?
A1: We calculate $R_2(0)$.
A2: We find bounds for the number $R_2(0.2)$ by going through all intermediate points $\xi$.
A3: We calculate $T_2(0.2)$.
-
Last update: 2025-01