
-
Title: L’Hospital’s Rule
-
Series: Real Analysis
-
Chapter: Differentiable Functions
-
YouTube-Title: Real Analysis 42 | L’Hospital’s Rule
-
Bright video: https://youtu.be/KbS_cRToPFA
-
Dark video: https://youtu.be/F3bYc5Syy-o
-
Ad-free video: Watch Vimeo video
-
Forum: Ask a question in Mattermost
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Exercise Download PDF sheets
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra42_sub_eng.srt missing
-
Download bright video: Link on Vimeo
-
Download dark video: Link on Vimeo
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f,g \colon [a,b] \rightarrow \mathbb{R}$ be differentiable functions. What is the correct formulation for the extended mean value theorem?
A1: There is $\hat{x}$ with $f^\prime(\hat{x}) = 0$.
A2: There is $\hat{x}$ with $f^\prime(\hat{x}) = f(a)$.
A3: There is $\hat{x}$ with $\frac{f^\prime(\hat{x})}{g^\prime(\hat{x})} = \frac{f(b) - f(a)}{g(b) - g(a)}$.
A4: There is $\hat{x}$ with $\frac{f^\prime(\hat{x})}{g^\prime(\hat{x})} = (f(b) - f(a) ) \cdot (g(b)-g(a))$.
Q2: Let $f,g \colon [-1,1] \rightarrow \mathbb{R}$ be differentiable functions with $ g^\prime(x) > 0$ for all $x$ and $\lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)}$ exists. What is a correct implication using l’Hospital’s rule?
A1: If $f(0) = g(0)$, then $ \displaystyle \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)} $.
A2: If $f(0) \neq g(0)$, then $ \displaystyle \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)} $.
A3: If $f(0) = g(0) = 0$, then $ \displaystyle \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)} $.
A4: If $f(0) = g(0) = 1$, then $ \displaystyle \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)} $.
Q3: Let’s apply l’Hospital’s rule for the following limit for $a > 0$: $$ \lim_{x \rightarrow 0} \frac{ \log(1 + a x) }{ x } $$
A1: $\frac{1}{a}$
A2: $1$
A3: $0$
A4: $a$
A5: $2a$
Q4: Let’s apply l’Hospital’s rule for the following limit for $a > 0$: $$ \lim_{x \rightarrow 0} \frac{ \sin( a x) }{ a x } $$
A1: $\frac{1}{a}$
A2: $1$
A3: $0$
A4: $a$
A5: $2a$
-
Last update: 2025-01