-
Title: Differentiability
-
Series: Real Analysis
-
Chapter: Differentiable Functions
-
YouTube-Title: Real Analysis 34 | Differentiability
-
Bright video: https://youtu.be/TLdBLqPTsYc
-
Dark video: https://youtu.be/N9vp1LyS6lU
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra34_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is not a correct definition of $f^\prime(x_0)$ for a function $f: \mathbb{R} \rightarrow \mathbb{R}$?
A1: $\displaystyle \lim_{x \rightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0}$.
A2: $\displaystyle \lim_{x \rightarrow x_0} \frac{f(x_0) - f(x)}{x_0 - x}$.
A3: $\displaystyle \lim_{z \rightarrow x_0} \frac{f(x_0) - f(z)}{x_0 - z}$.
A4: $\displaystyle \lim_{x_0 \rightarrow x} \frac{f(x_0) - f(x)}{x - x_0}$.
A5: $\displaystyle \lim_{n \rightarrow \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}$ if we get the same value for each sequence $x_n \xrightarrow{n \rightarrow \infty} x_0$.
Q2: Which of the following functions is not a linear function (= affine function = linear polynomial) $f: \mathbb{R} \rightarrow \mathbb{R}$?
A1: $f(x) = 3 x + 8$
A2: $f(x) = 3x$
A3: $f(x) = 8$
A4: $f(x) = 0$
A5: $f(x) = |x|$
Q3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = |x|$ and $x_0 = 1$. What is $f^\prime(x_0)$?
A1: 0
A2: -1
A3: 1
A4: It does not exist.
Q4: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = |x|$ and $x_0 = 0$. What is $f^\prime(x_0)$?
A1: 0
A2: -1
A3: 1
A4: It does not exist.
-
Last update: 2024-10