• Title: Differentiability

  • Series: Real Analysis

  • Chapter: Differentiable Functions

  • YouTube-Title: Real Analysis 34 | Differentiability

  • Bright video: https://youtu.be/TLdBLqPTsYc

  • Dark video: https://youtu.be/N9vp1LyS6lU

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra34_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is not a correct definition of $f^\prime(x_0)$ for a function $f: \mathbb{R} \rightarrow \mathbb{R}$?

    A1: $\displaystyle \lim_{x \rightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0}$.

    A2: $\displaystyle \lim_{x \rightarrow x_0} \frac{f(x_0) - f(x)}{x_0 - x}$.

    A3: $\displaystyle \lim_{z \rightarrow x_0} \frac{f(x_0) - f(z)}{x_0 - z}$.

    A4: $\displaystyle \lim_{x_0 \rightarrow x} \frac{f(x_0) - f(x)}{x - x_0}$.

    A5: $\displaystyle \lim_{n \rightarrow \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}$ if we get the same value for each sequence $x_n \xrightarrow{n \rightarrow \infty} x_0$.

    Q2: Which of the following functions is not a linear function (= affine function = linear polynomial) $f: \mathbb{R} \rightarrow \mathbb{R}$?

    A1: $f(x) = 3 x + 8$

    A2: $f(x) = 3x$

    A3: $f(x) = 8$

    A4: $f(x) = 0$

    A5: $f(x) = |x|$

    Q3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = |x|$ and $x_0 = 1$. What is $f^\prime(x_0)$?

    A1: 0

    A2: -1

    A3: 1

    A4: It does not exist.

    Q4: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = |x|$ and $x_0 = 0$. What is $f^\prime(x_0)$?

    A1: 0

    A2: -1

    A3: 1

    A4: It does not exist.

  • Last update: 2024-10

  • Back to overview page