-
Title: Continuity and Examples
-
Series: Real Analysis
-
Chapter: Continuous Functions
-
YouTube-Title: Real Analysis 27 | Continuity and Examples
-
Bright video: https://youtu.be/8VTG6EsyJh4
-
Dark video: https://youtu.be/XaU3pXdGcYQ
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra27_sub_eng.srt missing
-
Timestamps
00:00 Intro
00:18 Definition Continuity
01:22 Special case (holes in the domain of definition)
02:56 Extended definition of continuity
03:48 Examples
09:28 Credits
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Which of the following statements is equivalent to the statement: $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_0$.
A1: For all convergent sequences $(x_n) \subseteq \mathbb{R} $ with limit $x_0$, we have $\lim_{n \rightarrow \infty} f(x_n) = f(x_0)$.
A2: For all convergent sequences $(x_n) \subseteq \mathbb{R} \setminus{ x_0 }$ with limit $x_0$, we have $\lim_{n \rightarrow \infty} f(x_n) = x_0$.
A3: For all convergent sequences $(x_n) \subseteq \mathbb{R} \setminus{ x_0 }$ with limit $x_0$, we have $\lim_{n \rightarrow \infty} x_n = x_0$.
A4: For all convergent sequences $(f(x_n)) \subseteq \mathbb{R}$ with limit $f(x_0)$, we have $\lim_{n \rightarrow \infty} x_n = x_0$.
Q2: Is the function $ \displaystyle f(x) = \begin{cases} x^2 &, ~~ x > 0 \ 0 &, ~~x \leq 0\end{cases} ~$ continuous?
A1: Yes!
A2: No!
Q3: Is the function $ \displaystyle f(x) = \begin{cases} x^2 &, ~~ x \geq 0 \ 2-x &, ~~x < 0\end{cases} ~$ continuous?
A1: Yes!
A2: No!
Q4: Is the function $ \displaystyle f(x) = \begin{cases} 1 &, ~~ x \in \mathbb{Q} \ 1 &, ~~x \notin \mathbb{Q} \end{cases} ~$ continuous?
A1: Yes!
A2: No!
-
Last update: 2024-10