• Title: Continuity and Examples

  • Series: Real Analysis

  • Chapter: Continuous Functions

  • YouTube-Title: Real Analysis 27 | Continuity and Examples

  • Bright video: https://youtu.be/8VTG6EsyJh4

  • Dark video: https://youtu.be/XaU3pXdGcYQ

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra27_sub_eng.srt missing

  • Timestamps

    00:00 Intro

    00:18 Definition Continuity

    01:22 Special case (holes in the domain of definition)

    02:56 Extended definition of continuity

    03:48 Examples

    09:28 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Which of the following statements is equivalent to the statement: $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_0$.

    A1: For all convergent sequences $(x_n) \subseteq \mathbb{R} $ with limit $x_0$, we have $\lim_{n \rightarrow \infty} f(x_n) = f(x_0)$.

    A2: For all convergent sequences $(x_n) \subseteq \mathbb{R} \setminus{ x_0 }$ with limit $x_0$, we have $\lim_{n \rightarrow \infty} f(x_n) = x_0$.

    A3: For all convergent sequences $(x_n) \subseteq \mathbb{R} \setminus{ x_0 }$ with limit $x_0$, we have $\lim_{n \rightarrow \infty} x_n = x_0$.

    A4: For all convergent sequences $(f(x_n)) \subseteq \mathbb{R}$ with limit $f(x_0)$, we have $\lim_{n \rightarrow \infty} x_n = x_0$.

    Q2: Is the function $ \displaystyle f(x) = \begin{cases} x^2 &, ~~ x > 0 \ 0 &, ~~x \leq 0\end{cases} ~$ continuous?

    A1: Yes!

    A2: No!

    Q3: Is the function $ \displaystyle f(x) = \begin{cases} x^2 &, ~~ x \geq 0 \ 2-x &, ~~x < 0\end{cases} ~$ continuous?

    A1: Yes!

    A2: No!

    Q4: Is the function $ \displaystyle f(x) = \begin{cases} 1 &, ~~ x \in \mathbb{Q} \ 1 &, ~~x \notin \mathbb{Q} \end{cases} ~$ continuous?

    A1: Yes!

    A2: No!

  • Last update: 2024-10

  • Back to overview page