-
Title: Pointwise Convergence
-
Series: Real Analysis
-
Chapter: Continuous Functions
-
YouTube-Title: Real Analysis 24 | Pointwise Convergence
-
Bright video: https://youtu.be/Kq_KZpljeXo
-
Dark video: https://youtu.be/SYvEDEBuWrI
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra24_sub_eng.srt missing
-
Timestamps
00:00 Intro
00:33 Pointwise convergence
02:03 1st Example
03:20 2nd Example
06:40 3rd Example
07:43 Credits
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $(f_1, f_2, f_3, \ldots)$ be a sequence of functions $f_n: I \rightarrow \mathbb{R}$. What is the correct definition for the pointwise convergence to a function $f: I \rightarrow \mathbb{R}$?
A1: $ \displaystyle \forall x \in I ~~ \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall n \leq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $
A2: $ \displaystyle \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall x \in I ~~ \forall n \geq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $
A3: $ \displaystyle \forall x \in I ~~ \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall n \geq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $
A4: $ \displaystyle \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall x \in I ~~ \forall n \leq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $
Q2: Let $(f_1, f_2, f_3, \ldots)$ be a sequence of functions $f_n: [0,1] \rightarrow \mathbb{R}$ given by $f_n(x) = \frac{x}{n^2} - 2 - \frac{1}{n} $. What is the pointwise limit $f$?
A1: $ \displaystyle f(x) = \frac{x}{n^2} - 2 - \frac{1}{n} $
A2: $ \displaystyle f(x) = 0 $
A3: $ \displaystyle f(x) = x - 2 $
A4: $ \displaystyle f(x) = \frac{x}{2} - 2 - \frac{1}{2} $
A5: $ \displaystyle f(x) = -2 $
Q3: Let $(f_1, f_2, f_3, \ldots)$ be a sequence of functions $f_n: [0,1] \rightarrow \mathbb{R}$. Which example does not have a pointwise limit?
A1: $ \displaystyle f_n(x) = \frac{x}{n^2} - 2 - \frac{1}{n} $
A2: $ \displaystyle f_n(x) = x - 2$
A3: $ \displaystyle f_n(x) = \begin{cases} n^2 x - 2 &, ~~ x = 0\ x - \frac{1}{n} &, ~~x > 0\end{cases} $
A4: $ \displaystyle f_n(x) = \frac{n^2 x}{2} - 2 $
-
Last update: 2024-10