• Title: Pointwise Convergence

  • Series: Real Analysis

  • Chapter: Continuous Functions

  • YouTube-Title: Real Analysis 24 | Pointwise Convergence

  • Bright video: https://youtu.be/Kq_KZpljeXo

  • Dark video: https://youtu.be/SYvEDEBuWrI

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra24_sub_eng.srt missing

  • Timestamps

    00:00 Intro

    00:33 Pointwise convergence

    02:03 1st Example

    03:20 2nd Example

    06:40 3rd Example

    07:43 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(f_1, f_2, f_3, \ldots)$ be a sequence of functions $f_n: I \rightarrow \mathbb{R}$. What is the correct definition for the pointwise convergence to a function $f: I \rightarrow \mathbb{R}$?

    A1: $ \displaystyle \forall x \in I ~~ \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall n \leq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $

    A2: $ \displaystyle \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall x \in I ~~ \forall n \geq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $

    A3: $ \displaystyle \forall x \in I ~~ \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall n \geq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $

    A4: $ \displaystyle \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall x \in I ~~ \forall n \leq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $

    Q2: Let $(f_1, f_2, f_3, \ldots)$ be a sequence of functions $f_n: [0,1] \rightarrow \mathbb{R}$ given by $f_n(x) = \frac{x}{n^2} - 2 - \frac{1}{n} $. What is the pointwise limit $f$?

    A1: $ \displaystyle f(x) = \frac{x}{n^2} - 2 - \frac{1}{n} $

    A2: $ \displaystyle f(x) = 0 $

    A3: $ \displaystyle f(x) = x - 2 $

    A4: $ \displaystyle f(x) = \frac{x}{2} - 2 - \frac{1}{2} $

    A5: $ \displaystyle f(x) = -2 $

    Q3: Let $(f_1, f_2, f_3, \ldots)$ be a sequence of functions $f_n: [0,1] \rightarrow \mathbb{R}$. Which example does not have a pointwise limit?

    A1: $ \displaystyle f_n(x) = \frac{x}{n^2} - 2 - \frac{1}{n} $

    A2: $ \displaystyle f_n(x) = x - 2$

    A3: $ \displaystyle f_n(x) = \begin{cases} n^2 x - 2 &, ~~ x = 0\ x - \frac{1}{n} &, ~~x > 0\end{cases} $

    A4: $ \displaystyle f_n(x) = \frac{n^2 x}{2} - 2 $

  • Last update: 2024-10

  • Back to overview page