• Title: Weak Law of Large Numbers

  • Series: Probability Theory

  • YouTube-Title: Probability Theory 28 | Weak Law of Large Numbers

  • Bright video: https://youtu.be/wMH1muP-mAI

  • Dark video: https://youtu.be/2Hd_xXM8T3Y

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: pt28_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What does it mean that a family of random variables is i.i.d?

    A1: It means that they are independent and identically distributed.

    A2: It means that they are independent and identically defined.

    A3: It means that they are identically distributed and intelligent.

    A4: It means that they are intrinsically independent distributed.

    Q2: Let $X_k: \Omega \rightarrow \mathbb{R}$ be a random variable where $\mathbb{E}(|X_1|)$ exists. What is the correct statement for the weak law of large numbers?

    A1: If $(X_k){k \in \mathbb{N}}$ are i.i.d., then $$ \mathbb{P}\left( \Big| \frac{1}{n} \sum{k = 1}^n X_k - \mathbb{E}(X_1) \Big| \geq \varepsilon \right) \xrightarrow{n \rightarrow \infty} 0 $$

    A2: If $(X_k){k \in \mathbb{N}}$ are i.i.d., then $$ \mathbb{P}\left( \Big| \frac{1}{n} \sum{k = 1}^n X_k - \mathbb{E}(X_1) \Big| = \varepsilon \right) \xrightarrow{n \rightarrow \infty} 0 $$

    A3: If $(X_k){k \in \mathbb{N}}$ are i.i.d., then $$ \mathbb{P}\left( \Big| \frac{1}{n} \sum{k = 1}^n X_k - \mathbb{E}(X_1) \Big| \leq \varepsilon \right) \xrightarrow{n \rightarrow \infty} 0 $$

    A4: If $(X_k){k \in \mathbb{N}}$ are i.i.d., then $$ \mathbb{P}\left( \Big| \frac{1}{n} \sum{k = 1}^n X_k - \mathbb{E}(X_1) \Big| \leq \varepsilon \right) \xrightarrow{n \rightarrow \infty} \frac{1}{\varepsilon} $$

  • Last update: 2024-10

  • Back to overview page