• Title: Standard Deviation

  • Series: Probability Theory

  • YouTube-Title: Probability Theory 17 | Standard Deviation

  • Bright video: https://youtu.be/M3BggqD2L2U

  • Dark video: https://youtu.be/Xl73yogzz_I

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: pt17_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable. What is never correct for the standard deviation $\sigma(X)$?

    A1: $\sigma(X) = -1$

    A2: $\sigma(X) \in \mathbb{R}$

    A3: $\sigma(X) > 0 $

    A4: $ \sigma(X) = \sqrt{\mathrm{Var}(X) } $

    Q2: Let $X$ be a continuous random variable where the distribution is given by the normal distribution. What is the correct pdf?

    A1: $f_X(x) = \frac{1}{\sigma \sqrt{2 \pi} } \exp\Big( - \frac{1}{2} \frac{(x- \mu)^2}{\sigma^2} \Big) $

    A2: $f_X(x) = \frac{1}{\sigma \sqrt{\pi} } \log \Big( - \frac{1}{2} \frac{(x- \mu)^2}{\sigma^2} \Big) $

    A3: $f_X(x) = - \frac{1}{\sigma \sqrt{2 \pi} } \exp\Big( \frac{1}{2} \frac{(x- \mu)^2}{\sigma^2} \Big) $

    A4: $f_X(t) = \int_0^t \frac{1}{\sigma \sqrt{\pi} } \log \Big( - \frac{1}{2} \frac{(x- \mu)^2}{\sigma^2} \Big) dx $

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?