-
Title: Standard Deviation
-
Series: Probability Theory
-
YouTube-Title: Probability Theory 17 | Standard Deviation
-
Bright video: https://youtu.be/M3BggqD2L2U
-
Dark video: https://youtu.be/Xl73yogzz_I
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: pt17_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable. What is never correct for the standard deviation $\sigma(X)$?
A1: $\sigma(X) = -1$
A2: $\sigma(X) \in \mathbb{R}$
A3: $\sigma(X) > 0 $
A4: $ \sigma(X) = \sqrt{\mathrm{Var}(X) } $
Q2: Let $X$ be a continuous random variable where the distribution is given by the normal distribution. What is the correct pdf?
A1: $f_X(x) = \frac{1}{\sigma \sqrt{2 \pi} } \exp\Big( - \frac{1}{2} \frac{(x- \mu)^2}{\sigma^2} \Big) $
A2: $f_X(x) = \frac{1}{\sigma \sqrt{\pi} } \log \Big( - \frac{1}{2} \frac{(x- \mu)^2}{\sigma^2} \Big) $
A3: $f_X(x) = - \frac{1}{\sigma \sqrt{2 \pi} } \exp\Big( \frac{1}{2} \frac{(x- \mu)^2}{\sigma^2} \Big) $
A4: $f_X(t) = \int_0^t \frac{1}{\sigma \sqrt{\pi} } \log \Big( - \frac{1}{2} \frac{(x- \mu)^2}{\sigma^2} \Big) dx $
-
Last update: 2024-10