• Title: Properties of the Expectation

  • Series: Probability Theory

  • YouTube-Title: Probability Theory 15 | Properties of the Expectation

  • Bright video: https://youtu.be/FGoEgJYsNRg

  • Dark video: https://youtu.be/HsP6Fd46YeA

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: pt15_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable with $X \sim \mathrm{Exp}(1)$. What is a correct pdf for $\mathbb{P}_X$?

    A1: $$f_X(x) = \begin{cases} -e^{-x} , , & x \geq 0 \ e^{-x} , , & x < 0\end{cases}$$

    A2: $$f_X(x) = \begin{cases} e^{-x} , , & x > 0 \ 0 , , & x \leq 0\end{cases}$$

    A3: $$f_X(x) = \begin{cases} -e^{-x} , , & x > 0 \ 0 , , & x \leq 0\end{cases}$$

    A4: $$f_X(x) = \begin{cases} -e^{-x} , , & x > 0 \ 1 , , & x \leq 0\end{cases}$$

    Q2: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable with $X \sim \mathrm{Exp}(1)$. What is $\mathbb{E}(X)$?

    A1: $1$

    A2: $\frac{1}{2}$

    A3: $-\frac{1}{2}$

    A4: $\frac{1}{4}$

    Q3: Let $X \sim \mathrm{Exp}(2)$ and $Y \sim \mathrm{Exp}(3)$ be two independent random variables. What is $\mathbb{E}(X \cdot Y )$?

    A1: $\frac{1}{6}$

    A2: $\frac{1}{5}$

    A3: $-\frac{1}{2}$

    A4: $\frac{1}{4}$

    A5: $\frac{1}{3}$

  • Last update: 2024-10

  • Back to overview page