-
Title: Properties of the Expectation
-
Series: Probability Theory
-
YouTube-Title: Probability Theory 15 | Properties of the Expectation
-
Bright video: https://youtu.be/FGoEgJYsNRg
-
Dark video: https://youtu.be/HsP6Fd46YeA
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: pt15_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable with $X \sim \mathrm{Exp}(1)$. What is a correct pdf for $\mathbb{P}_X$?
A1: $$f_X(x) = \begin{cases} -e^{-x} , , & x \geq 0 \ e^{-x} , , & x < 0\end{cases}$$
A2: $$f_X(x) = \begin{cases} e^{-x} , , & x > 0 \ 0 , , & x \leq 0\end{cases}$$
A3: $$f_X(x) = \begin{cases} -e^{-x} , , & x > 0 \ 0 , , & x \leq 0\end{cases}$$
A4: $$f_X(x) = \begin{cases} -e^{-x} , , & x > 0 \ 1 , , & x \leq 0\end{cases}$$
Q2: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable with $X \sim \mathrm{Exp}(1)$. What is $\mathbb{E}(X)$?
A1: $1$
A2: $\frac{1}{2}$
A3: $-\frac{1}{2}$
A4: $\frac{1}{4}$
Q3: Let $X \sim \mathrm{Exp}(2)$ and $Y \sim \mathrm{Exp}(3)$ be two independent random variables. What is $\mathbb{E}(X \cdot Y )$?
A1: $\frac{1}{6}$
A2: $\frac{1}{5}$
A3: $-\frac{1}{2}$
A4: $\frac{1}{4}$
A5: $\frac{1}{3}$
-
Last update: 2024-10