• Title: Expectation and Change-of-Variables

  • Series: Probability Theory

  • YouTube-Title: Probability Theory 14 | Expectation and Change-of-Variables

  • Bright video: https://youtu.be/EhVbqe8J_Ww

  • Dark video: https://youtu.be/rZtltvKNA2A

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: pt14_sub_eng.srt missing

  • Definitions in the video: expectation of a random variable

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable. What is not correct for the expectation $\mathbb{E}(X)$?

    A1: $\mathbb{E}(X) \in \mathbb{R}$

    A2: $\mathbb{E}(X) = \int_{\Omega} X , d\mathbb{P}$

    A3: $\mathbb{E}(X) = \int_{\Omega} X(\omega) , d\mathbb{P}(\omega)$

    A4: $\mathbb{E}(X) = \int_{X(\Omega)} x , d\mathbb{P}_X(x)$

    A5: $\mathbb{E}(X) = \int_{X(\Omega)} , d\mathbb{P}_X(x)$

    Q2: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable with a discrete distribution. Which statement is correct?

    A1: $\mathbb{E}(X) = \sum_{j=1}^\infty j^2 $

    A2: $\mathbb{E}(X) = \sum_{x \in \mathbb{R}} \mathbb{P}(X = x)$

    A3: $\mathbb{E}(X) = \sum_{x \in \mathbb{R}} x \cdot \mathbb{P}(X = x)$

    A4: $\mathbb{E}(X) = \sum_{x \in \mathbb{R}} x^2 \cdot \mathbb{P}(X = x)$

    Q3: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable with a continuous distribution given by a pdf $f_X$. Which statement is correct?

    A1: $\mathbb{E}(X) = \int_{\mathbb{R}} x , dx$

    A2: $\mathbb{E}(X) = \int_{\mathbb{R}} x f_X(x) , dx$

    A3: $\mathbb{E}(X) = \int_{\mathbb{R}} x^2 f_X(x) , dx$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?