• Title: Examples for Local Extrema

  • Series: Multivariable Calculus

  • YouTube-Title: Multivariable Calculus 19 | Examples for Local Extrema

  • Bright video: https://youtu.be/GkfhOVHU4Rc

  • Dark video: https://youtu.be/7k7GE2hyEYg

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Python file: Download Python file

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mc19_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x_1, x_2) = x_1^2 + 5 x_2^2 $ for all $(x_1, x_2) \in \mathbb{R}^2$. What is the Hessian at the point $(0,0)$?

    A1: $$ \begin{pmatrix}2 & 0 \ 0 & 10 \end{pmatrix} $$

    A2: $$ \begin{pmatrix}2 & x_1 \ 0 & x_2 \end{pmatrix} $$

    A3: $$ \begin{pmatrix}2 & 0 \ 0 & 12 \end{pmatrix} $$

    A4: $$ \begin{pmatrix}x_1 & 0 \ 0 & x_2 \end{pmatrix} $$

    Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x_1, x_2) = x_1 x_2 $ for all $(x_1, x_2) \in \mathbb{R}^2$. Which statement is correct?

    A1: $ \begin{pmatrix}0 & 1 \ 1 & 0 \end{pmatrix} $ is the Hessian matrix at $(0,0)$.

    A2: $ \begin{pmatrix}0 & 1 \ 1 & 0 \end{pmatrix} $ is positive definite.

    A3: $ \begin{pmatrix}0 & 1 \ 1 & 0 \end{pmatrix} $ is negative definite.

    A4: $ f $ has a local extremum at $(0,0)$.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?