-
Title: Examples for Local Extrema
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 19 | Examples for Local Extrema
-
Bright video: https://youtu.be/GkfhOVHU4Rc
-
Dark video: https://youtu.be/7k7GE2hyEYg
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Python file: Download Python file
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc19_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x_1, x_2) = x_1^2 + 5 x_2^2 $ for all $(x_1, x_2) \in \mathbb{R}^2$. What is the Hessian at the point $(0,0)$?
A1: $$ \begin{pmatrix}2 & 0 \ 0 & 10 \end{pmatrix} $$
A2: $$ \begin{pmatrix}2 & x_1 \ 0 & x_2 \end{pmatrix} $$
A3: $$ \begin{pmatrix}2 & 0 \ 0 & 12 \end{pmatrix} $$
A4: $$ \begin{pmatrix}x_1 & 0 \ 0 & x_2 \end{pmatrix} $$
Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x_1, x_2) = x_1 x_2 $ for all $(x_1, x_2) \in \mathbb{R}^2$. Which statement is correct?
A1: $ \begin{pmatrix}0 & 1 \ 1 & 0 \end{pmatrix} $ is the Hessian matrix at $(0,0)$.
A2: $ \begin{pmatrix}0 & 1 \ 1 & 0 \end{pmatrix} $ is positive definite.
A3: $ \begin{pmatrix}0 & 1 \ 1 & 0 \end{pmatrix} $ is negative definite.
A4: $ f $ has a local extremum at $(0,0)$.
-
Last update: 2024-10