-
Title: Local Extrema
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 18 | Local Extrema
-
Bright video: https://youtu.be/6fWhVgIxKcM
-
Dark video: https://youtu.be/9MPZDoCOdaA
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc18_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x_1, x_2) = 4$ for all $(x_1, x_2) \in \mathbb{R}^2$. Does $f$ has a local maximum at the point $(1,3)$?
A1: Yes!
A2: No, but it’s an isolated local minimum.
A3: No, the function has no local maxima.
A4: One needs more information.
Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x_1, x_2) = x_1^2 + x_2^2 $ for all $(x_1, x_2) \in \mathbb{R}^2$. Does $f$ has a local maximum at the point $(0,0)$?
A1: Yes!
A2: No, but it’s an isolated local minimum.
A3: No, the function has no local maxima.
A4: One needs more information.
Q3: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x_1, x_2) = \cos(x_1 x_2)$. What is the Hessian at $(0,0)$?
A1: $ \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$
A2: $ \begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}$
A3: $ \begin{pmatrix} -1 & 0 \ 0 & 2 \end{pmatrix}$
A4: $ \begin{pmatrix} 1 & 2 \ 0 & 2 \end{pmatrix}$
A5: $ \begin{pmatrix} 1 & 0 \ 0 & 2 \end{pmatrix}$
-
Last update: 2024-10