• Title: Local Extrema

  • Series: Multivariable Calculus

  • YouTube-Title: Multivariable Calculus 18 | Local Extrema

  • Bright video: https://youtu.be/6fWhVgIxKcM

  • Dark video: https://youtu.be/9MPZDoCOdaA

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mc18_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x_1, x_2) = 4$ for all $(x_1, x_2) \in \mathbb{R}^2$. Does $f$ has a local maximum at the point $(1,3)$?

    A1: Yes!

    A2: No, but it’s an isolated local minimum.

    A3: No, the function has no local maxima.

    A4: One needs more information.

    Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x_1, x_2) = x_1^2 + x_2^2 $ for all $(x_1, x_2) \in \mathbb{R}^2$. Does $f$ has a local maximum at the point $(0,0)$?

    A1: Yes!

    A2: No, but it’s an isolated local minimum.

    A3: No, the function has no local maxima.

    A4: One needs more information.

    Q3: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x_1, x_2) = \cos(x_1 x_2)$. What is the Hessian at $(0,0)$?

    A1: $ \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$

    A2: $ \begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}$

    A3: $ \begin{pmatrix} -1 & 0 \ 0 & 2 \end{pmatrix}$

    A4: $ \begin{pmatrix} 1 & 2 \ 0 & 2 \end{pmatrix}$

    A5: $ \begin{pmatrix} 1 & 0 \ 0 & 2 \end{pmatrix}$

  • Last update: 2024-10

  • Back to overview page