-
Title: Vector Fields and Potential Functions
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 14 | Vector Fields and Potential Functions
-
Bright video: https://youtu.be/IlkvOqOOgwM
-
Dark video: https://youtu.be/WVEK15dNxi4
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc14_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by $f(x_1, x_2) = 2 x_1 x_2^7$. What is the gradient of $f$?
A1: $$ \mathrm{grad}(f)(x_1, x_2) = \begin{pmatrix} 2 x_2^7 \ 14 x_1 x_2^6 \end{pmatrix}$$
A2: $$ \mathrm{grad}(f)(x_1, x_2) = \begin{pmatrix} 2 x_2^7 \ 1 \ 14 x_1 x_2^6 \end{pmatrix}$$
A3: $$ \mathrm{grad}(f)(x_1, x_2) = \begin{pmatrix} 2 x_1^7 \ x_1 x_2^6 \end{pmatrix}$$
A4: $$ \mathrm{grad}(f)(x_1, x_2) = \begin{pmatrix} 2 x_1 x_2\end{pmatrix}$$
Q2: Consider the vector function $v: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $$v(x_1, x_2) = \begin{pmatrix} 2 x_2^7 \ 14 x_1 x_2^6 \end{pmatrix}$$ Does $v$ have a potential function?
A1: Yes, infinitely many ones.
A2: Yes, but only one.
A3: No, there is no potential function.
A4: One needs more information.
Q3: What is the necessary condition for $v: \mathbb{R}^n \rightarrow \mathbb{R}^n$ having a potential function $f \in C^2(\mathbb{R}^n)$?
A1: $v$ is continuously differentiable with $$ \frac{\partial v_i}{\partial x_j}(x) = \frac{\partial v_j}{\partial x_i}(x) $$ for all $x, i, j$.
A2: $v$ is two-times continuously differentiable with $$ \frac{\partial v_i}{\partial x_j}(x) = \frac{\partial v_i}{\partial x_i}(x) $$ for all $x, i, j$.
A3: $v$ is two-times continuously differentiable with $$ \frac{\partial v_j}{\partial x_j}(x) = \frac{\partial v_i}{\partial x_i}(x) $$ for all $x, i, j$.
A4: $v$ is continuously differentiable with $$ \frac{\partial v_i}{\partial x_i}(x) = \frac{\partial v_j}{\partial x_j}(x) $$ for all $x, i, j$.
-
Last update: 2024-10