-
Title: Second Order Partial Derivatives
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 12 | Second Order Partial Derivatives
-
Bright video: https://youtu.be/L8UWrVtLofY
-
Dark video: https://youtu.be/5ydi26Wwh4I
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc12_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function for which all partial derivatives of second order exist. How many second-order partial derivatives do we have?
A1: $4$
A2: $1$
A3: $2$
A4: $3$
Q2: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by $f(x_1, x_2) = 2 x_1 x_2$. What is the partial derivative $\frac{\partial^2 f}{ \partial x_1 \partial x_2 }(x)$
A1: $2$
A2: $1$
A3: $0$
A4: $3$
Q3: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by $f(x_1, x_2) = 2 x_1 x_2$. What is the partial derivative $\frac{\partial^2 f}{ \partial x_2^2}(x)$
A1: $0$
A2: $1$
A3: $2$
A4: $3$
-
Last update: 2024-10