-
Title: Differential in Local Charts
-
Series: Manifolds
-
YouTube-Title: Manifolds 24 | Differential in Local Charts
-
Bright video: https://youtu.be/4O8kT1u4c1o
-
Dark video: https://youtu.be/ulBS7eXgOwE
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mf24_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $\mathbb{R}^n$ and $ \mathbb{R}^m$ be given as smooth manifolds. In particular, we have the identity maps as charts. Let $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$. What is correct?
A1: The differential $df$ can be identified with the Jacobian $J_f$.
A2: $df$ is not defined.
A3: The Jacobian $J_f$ is always a square matrix.
A4: $f = J_f^{-1}$
Q2: Let $M,N$ be smooth manifolds with charts $h$ and $k$, respectively, and $f: M \rightarrow N$ be a smooth map. We can define $\widetilde{f} = k \circ f \circ h^{-1}$. What is correct for the differential $df_p$?
A1: $df_p ([\gamma])= dk_{f(p)}^{1} J_{ \widetilde{f} }(p) dh_p ([\gamma]) $?
A2: $df_p ([\gamma])= dh_{f(p)}^{1} J_{ \widetilde{f} }(p) dk_p ([\gamma]) $?
A3: $df_p = J_{\widetilde{f}}(p)$
A4: $f = J_f^{-1}$
-
Last update: 2024-10