• Title: Differential in Local Charts

  • Series: Manifolds

  • YouTube-Title: Manifolds 24 | Differential in Local Charts

  • Bright video: https://youtu.be/4O8kT1u4c1o

  • Dark video: https://youtu.be/ulBS7eXgOwE

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mf24_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $\mathbb{R}^n$ and $ \mathbb{R}^m$ be given as smooth manifolds. In particular, we have the identity maps as charts. Let $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$. What is correct?

    A1: The differential $df$ can be identified with the Jacobian $J_f$.

    A2: $df$ is not defined.

    A3: The Jacobian $J_f$ is always a square matrix.

    A4: $f = J_f^{-1}$

    Q2: Let $M,N$ be smooth manifolds with charts $h$ and $k$, respectively, and $f: M \rightarrow N$ be a smooth map. We can define $\widetilde{f} = k \circ f \circ h^{-1}$. What is correct for the differential $df_p$?

    A1: $df_p ([\gamma])= dk_{f(p)}^{1} J_{ \widetilde{f} }(p) dh_p ([\gamma]) $?

    A2: $df_p ([\gamma])= dh_{f(p)}^{1} J_{ \widetilde{f} }(p) dk_p ([\gamma]) $?

    A3: $df_p = J_{\widetilde{f}}(p)$

    A4: $f = J_f^{-1}$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?