• Title: Tangent Space for Submanifolds

  • Series: Manifolds

  • YouTube-Title: Manifolds 19 | Tangent Space for Submanifolds

  • Bright video: https://youtu.be/m9xLLrlnqH0

  • Dark video: https://youtu.be/LEchROOY3pE

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mf19_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x,y) = x^2 + y^2 - 1$. We know that $M = f^{-1}[{ 0 } ]$ is a submanifold. What is the tangent space at the point $(0,1) \in M$?

    A1: $T^{\mathrm{sub}}_p(M) = {0} \times \mathbb{R}$

    A2: $T^{\mathrm{sub}}_p(M) = \mathbb{R}$

    A3: $T^{\mathrm{sub}}_p(M) = \mathbb{R} \times {0}$

    A4: $T^{\mathrm{sub}}_p(M) = \mathbb{R} \times \mathbb{R}$

    A5: $T^{\mathrm{sub}}_p(M) = { 0 }$

    Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x,y) = x^2 + y^2 - 1$. We know that $M = f^{-1}[{ 0 } ]$ is a submanifold? Which vector is orthogonal to the tangent space $T^{\mathrm{sub}}_p(M)$.

    A1: $\mathrm{grad}(f)(p)$

    A2: $(1,1) - p$

    A3: $(1,0) + p$

    Q3: Let $M \subset \mathbb{R}^4$ be a submanifold of dimension 3. What is not correct for the tangent space $T^{\mathrm{sub}}_p(M)$?

    A1: $T^{\mathrm{sub}}_p(M)$ is a vector space in $\mathbb{R}^3$

    A2: dimension of $T^{\mathrm{sub}}_p(M)$ is 3

    A3: $T^{\mathrm{sub}}_p(M)$ is a vector space in $\mathbb{R}^4$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?