• Title: Regular Value Theorem (abstract version)

  • Series: Manifolds

  • YouTube-Title: Manifolds 18 | Regular Value Theorem (abstract version)

  • Bright video: https://youtu.be/no3sLEZ9QKE

  • Dark video: https://youtu.be/gcRsbSl0Ge8

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mf18_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $f(x,y) = x^2 + y^2 - 1$. Is $f^{-1}[{ 0 } ]$ a submanifold?

    A1: Yes, it is by the regular value theorem.

    A2: No, 0 is not a regular value.

    A3: No, the function is not well-defined.

    A4: One needs more information.

    Q2: One does one necessarily need for the abstract regular value theorem?

    A1: Two smooth manifolds and a smooth map between them.

    A2: One smooth manifold and a function on it.

    A3: A regular value of a function $f: \mathbb{R} \rightarrow \mathbb{R}$.

    Q3: Consider the set of matrices $${ A \in \mathbb{R}^{d \times d} \mid A^T = -A }$$ Is this a manifold?

    A1: Yes, it’s of dimension $\frac{d^2 - d}{2}$.

    A2: Yes, it’s of dimension $\frac{d(d+1)}{2}$,

    A3: No, it is not.

  • Last update: 2024-10

  • Back to overview page