• Title: Smooth Structures

  • Series: Manifolds

  • YouTube-Title: Manifolds 12 | Smooth Structures

  • Bright video: https://youtu.be/VzldIIxogyA

  • Dark video: https://youtu.be/JmHRe1k2jCQ

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mf12_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Which of the following maps can be a transition map for some manifold?

    A1: $ \omega: \mathbb{R}^n \rightarrow \mathbb{R}^{n+1}, ~ x \mapsto x$

    A2: $ \omega: [0,1] \rightarrow \mathbb{R}^{2}, ~ x \mapsto \binom{x}{1}$

    A3: $ \omega: \mathbb{R}^n \rightarrow \mathbb{R}^{n}, ~ x \mapsto x$

    A4: $ \omega: \mathbb{R}^2 \rightarrow \mathbb{R}^{2}, ~ x \mapsto 0$

    Q2: Let $\omega: \mathbb{R}^n \rightarrow \mathbb{R}^{n}$ be a $C^k$-diffeomorphism for $k\geq1$. What is not correct in general?

    A1: $\omega$ is a $C^{k-1}$-diffeomorphism.

    A2: $\omega$ is a homeomorphism.

    A3: $\omega$ is invertible.

    A4: $\omega$ is continuous.

    A5: $\omega$ is $(k+1)$-times continuously differentiable.

    Q3: A pair $(M,\mathcal{A})$ is called a $C^k$-smooth manifold if

    A1: $M$ is topological manifold and $\mathcal{A}$ is an atlas.

    A2: $M$ is topological manifold and $\mathcal{A}$ is a maximal $C^k$-atlas.

    A3: $M$ is topological manifold and $\mathcal{A}$ is a $C^k$-atlas.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?