• Title: Examples for Manifolds

  • Series: Manifolds

  • YouTube-Title: Manifolds 10 | Examples for Manifolds

  • Bright video: https://youtu.be/IsB4JGLPgH0

  • Dark video: https://youtu.be/hJIoBmLurF4

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mf10_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(X,\mathcal{T})$ be the discrete topological space. Is it a manifold?

    A1: Yes, always!

    A2: No, never!

    A3: There are examples and counterexamples.

    Q2: Let $(\mathbb{R},\mathcal{T})$ be the topological space given by the discrete topology. Is it a manifold?

    A1: Yes!

    A2: No!

    Q3: Let $(\mathbb{N},\mathcal{T})$ be the topological space given by the discrete topology. Is it a manifold?

    A1: Yes!

    A2: No!

    A3: There is not enough information to answer this question.

    Q4: Let $(\mathbb{R},\mathcal{T})$ be the topological space given by the standard topology. This is a manifold of dimension

    A1: $0$.

    A2: $1$.

    A3: $2$.

    A4: $3$.

    A5: $4$.

    Q5: Let $(M,\mathcal{T})$ be a manifold and $(U_i, h_i)_{i \in I}$ an atlas. What is correct?

    A1: $\bigcup_{i \in I} U_i = \emptyset$

    A2: $\bigcap_{i \in I} U_i = \emptyset$

    A3: $\bigcup_{i \in I} U_i = M$

    A4: $\bigcap_{i \in I} U_i = M$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?