• Title: Projective Space

  • Series: Manifolds

  • YouTube-Title: Manifolds 5 | Projective Space

  • Bright video: https://youtu.be/WstgxuPSxuE

  • Dark video: https://youtu.be/zr3vySH6g-A

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mf05_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is the definition of the $n$-dimensional sphere?

    A1: $S^n = { x \in \mathbb{R}^{n+1} \mid | x | \leq 1 }$

    A2: $S^n = { x \in \mathbb{R}^n \mid | x | \geq 1 }$

    A3: $S^n = { x \in \mathbb{R}^{n+1} \mid | x | = 1 }$

    A4: $S^n = { x \in \mathbb{R}^{n} \mid | x | = 1 }$

    A5: $S^n = { x \in \mathbb{R}^{n+1} \mid | x | \geq 1 }$

    Q2: What is the definition of the projective space $\mathbf{P}^n(\mathbb{R})$?

    A1: $S^n! /! ! \sim ~~$ for $x\sim y$ if $x=y$.

    A2: $S^n! /! ! \sim ~~$ for $x\sim y$ if $x=y$ or $x = -y$.

    A3: $S^n! /! !\sim ~~$ for $x\sim y$ if $x=y$ and $x = -y$.

    A4: $S^n ! /! ! \sim ~~$ for $x\sim y$ if $x=y-1 $.

    Q3: Is the projective space $\mathbf{P}^n(\mathbb{R})$ together with the quotient topology a Hausdorff space?

    A1: Yes!

    A2: No!

    A3: Only for $n=1$.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?