-
Title: Projective Space
-
Series: Manifolds
-
YouTube-Title: Manifolds 5 | Projective Space
-
Bright video: https://youtu.be/WstgxuPSxuE
-
Dark video: https://youtu.be/zr3vySH6g-A
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mf05_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the definition of the $n$-dimensional sphere?
A1: $S^n = { x \in \mathbb{R}^{n+1} \mid | x | \leq 1 }$
A2: $S^n = { x \in \mathbb{R}^n \mid | x | \geq 1 }$
A3: $S^n = { x \in \mathbb{R}^{n+1} \mid | x | = 1 }$
A4: $S^n = { x \in \mathbb{R}^{n} \mid | x | = 1 }$
A5: $S^n = { x \in \mathbb{R}^{n+1} \mid | x | \geq 1 }$
Q2: What is the definition of the projective space $\mathbf{P}^n(\mathbb{R})$?
A1: $S^n! /! ! \sim ~~$ for $x\sim y$ if $x=y$.
A2: $S^n! /! ! \sim ~~$ for $x\sim y$ if $x=y$ or $x = -y$.
A3: $S^n! /! !\sim ~~$ for $x\sim y$ if $x=y$ and $x = -y$.
A4: $S^n ! /! ! \sim ~~$ for $x\sim y$ if $x=y-1 $.
Q3: Is the projective space $\mathbf{P}^n(\mathbb{R})$ together with the quotient topology a Hausdorff space?
A1: Yes!
A2: No!
A3: Only for $n=1$.
-
Last update: 2024-10