• Title: Quotient Spaces

  • Series: Manifolds

  • YouTube-Title: Manifolds 4 | Quotient Spaces

  • Bright video: https://youtu.be/nh-YgZph-r4

  • Dark video: https://youtu.be/sXdQg1on3J4

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mf04_sub_eng.srt missing

  • Other languages: German version

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $X$ be a set and $\sim$ be an equivalence relation on $X$. What is not a property of $\sim$?

    A1: $x \sim x$ for all $x \in X$

    A2: If $x \sim y$, then also $y \sim x$

    A3: If $x \sim y$ or $x \sim z$, then also $y \sim z$.

    A4: If $x \sim y$ and $y \sim z$, then also $x \sim z$.

    Q2: Let $(X, \mathcal{T}) $ be a topological space and $\sim$ be an equivalence relation on $X$. What is the definition of the canonical projection $q$?

    A1: $q(x) = [x]_{\sim}$

    A2: $q([x]_{\sim}) = x$

    A3: $q(x) = X/_{\sim}$

    Q3: Let $(X, \mathcal{T}) $ be a topological space and $\sim$ be an equivalence relation on $X$. What is the definition of the quotient topology on $X/_{\sim}$?

    A1: A set $U$ in $X/_{\sim}$ is open if $q[U]$ is open in $X$.

    A2: A set $U$ in $X/_{\sim}$ is open if $q^{-1}[U]$ is open in $X$.

    A3: A set $U$ in $X/_{\sim}$ is open if $q[U]$ is not open in $X$.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?