• Title: Hausdorff Spaces

  • Series: Manifolds

  • YouTube-Title: Manifolds 3 | Hausdorff Spaces

  • Bright video: https://youtu.be/Ty3ZLl7cOI0

  • Dark video: https://youtu.be/LEeRgxRsqSc

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mf03_sub_eng.srt missing

  • Other languages: German version

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(X, \mathcal{T}) $ be a topological space. What is the correct definition for the convergence for a sequence $(a_n)_{n \in \mathbb{N}}$ in $X$?

    A1: $ (\exists a \in X) $ $~ (\forall U \in \mathcal{T} \text{ with } a \in U)$ $~ (\exists N \in \mathbb{N}) ~ (\forall n \geq N) ~:$ $$a_n \in U $$

    A2: $ (\exists a \in X) $ $~ (\forall U \in \mathcal{T} \text{ with } a \in U) $ $~ (\forall N \in \mathbb{N}) $ $~ (\exists n \geq N) ~:$ $$a_n \in U $$

    A3: $ (\exists a \in X) $ $~ (\exists U \in \mathcal{T} \text{ with } a \in U) $ $~ (\exists N \in \mathbb{N}) $ $~ (\forall n \geq N) ~:$ $$a_n \in U $$

    A4: $ (\forall a \in X) $ $~ (\forall U \in \mathcal{T} \text{ with } a \in U) $ $~ (\exists N \in \mathbb{N}) $ $~ (\forall n \geq N) ~:$ $$a_n \in U $$

    Q2: Let $(X, \mathcal{T}) $ be a topological space. What do we need such that we call this space a Hausdorff space?

    A1: For two different points $x,y \in X$, we find sets $U_x, U_y \subseteq X$ with $U_x \cap U_y = \emptyset$.

    A2: For two different points $x,y \in X$, we find sets $U_x, U_y \in \mathcal{T}$ with $U_x \cap U_y = \emptyset$.

    A3: For two different points $x,y \in X$, we find sets $U_x, U_y \subseteq X$ with $U_x \cap U_y \neq \emptyset$.

    Q3: Let $(X, \mathcal{T}) $ be a topological space, where the topology $\mathcal{T}$ is induced by a metric $d$ on $X$. This means that $U \in \mathcal{T}$ if and only if $U$ is open in the metric space $(X,d)$. Is $(X, \mathcal{T}) $ a Hausdorff space?

    A1: Yes, always!

    A2: No, never!

    A3: There are positive examples and counterexamples.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?