-
Title: Hausdorff Spaces
-
Series: Manifolds
-
YouTube-Title: Manifolds 3 | Hausdorff Spaces
-
Bright video: https://youtu.be/Ty3ZLl7cOI0
-
Dark video: https://youtu.be/LEeRgxRsqSc
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mf03_sub_eng.srt missing
-
Other languages: German version
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $(X, \mathcal{T}) $ be a topological space. What is the correct definition for the convergence for a sequence $(a_n)_{n \in \mathbb{N}}$ in $X$?
A1: $ (\exists a \in X) $ $~ (\forall U \in \mathcal{T} \text{ with } a \in U)$ $~ (\exists N \in \mathbb{N}) ~ (\forall n \geq N) ~:$ $$a_n \in U $$
A2: $ (\exists a \in X) $ $~ (\forall U \in \mathcal{T} \text{ with } a \in U) $ $~ (\forall N \in \mathbb{N}) $ $~ (\exists n \geq N) ~:$ $$a_n \in U $$
A3: $ (\exists a \in X) $ $~ (\exists U \in \mathcal{T} \text{ with } a \in U) $ $~ (\exists N \in \mathbb{N}) $ $~ (\forall n \geq N) ~:$ $$a_n \in U $$
A4: $ (\forall a \in X) $ $~ (\forall U \in \mathcal{T} \text{ with } a \in U) $ $~ (\exists N \in \mathbb{N}) $ $~ (\forall n \geq N) ~:$ $$a_n \in U $$
Q2: Let $(X, \mathcal{T}) $ be a topological space. What do we need such that we call this space a Hausdorff space?
A1: For two different points $x,y \in X$, we find sets $U_x, U_y \subseteq X$ with $U_x \cap U_y = \emptyset$.
A2: For two different points $x,y \in X$, we find sets $U_x, U_y \in \mathcal{T}$ with $U_x \cap U_y = \emptyset$.
A3: For two different points $x,y \in X$, we find sets $U_x, U_y \subseteq X$ with $U_x \cap U_y \neq \emptyset$.
Q3: Let $(X, \mathcal{T}) $ be a topological space, where the topology $\mathcal{T}$ is induced by a metric $d$ on $X$. This means that $U \in \mathcal{T}$ if and only if $U$ is open in the metric space $(X,d)$. Is $(X, \mathcal{T}) $ a Hausdorff space?
A1: Yes, always!
A2: No, never!
A3: There are positive examples and counterexamples.
-
Last update: 2024-10