-
Title: Spectral Mapping Theorem
-
Series: Linear Algebra
-
Chapter: Eigenvalues and similar things
-
YouTube-Title: Linear Algebra 63 | Spectral Mapping Theorem
-
Bright video: https://youtu.be/KWGpLLHGr28
-
Dark video: https://youtu.be/r9ZWx1NKNX0
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la63_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the matrix $\begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}$. What are the eigenvalues?
A1: $-i$ and $i$
A2: $-1$ and $1$
A3: $-i$ and $1$
A4: $-1$ and $i$
Q2: Consider the matrix $ A = \begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}$. What are the eigenvalues of the matrix $A^{10}$?
A1: Only $-1$
A2: $-1$ and $1$
A3: $-i$ and $1$
A4: Only $1$
A5: $0$ and $1$
Q3: Let $ A $ be a matrix with spectrum ${ 0, 1}$. Now consider the matrix $B = A^3 + 2 A^2 - 1$. What is correct?
A1: $\mathrm{spec}(B) = { -1, 2 } $
A2: $\mathrm{spec}(B) = { 0,1 } $
A3: $\mathrm{spec}(B) \subseteq { 0 } $
A4: $\mathrm{spec}(B) \supseteq { 0, 1} $
-
Last update: 2024-10