-
Title: Recipe for Calculating Eigenvectors
-
Series: Linear Algebra
-
Chapter: Eigenvalues and similar things
-
YouTube-Title: Linear Algebra 62 | Recipe for Calculating Eigenvectors
-
Bright video: https://youtu.be/TyxlXwiQfHk
-
Dark video: https://youtu.be/iY23sjFeG_Y
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la62_sub_eng.srt missing
-
Timestamps
00:00 Intro
00:50 Algebraic and geometric multiplicities
01:33 Recipe
06:09 3x3 example
06:31 Step 1: eigenvalues
09:17 Step 2: eigenspaces
14:50 Step 3: eigenvectors
16:02 Credits
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the matrix $A \in \mathbb{C}^{n \times n}$. What is correct for the eigenspace $\mathrm{Eig}(\lambda)$.
A1: If $\lambda$ is an eigenvalue, the eigenspace is at least one-dimensional.
A2: $\mathrm{Eig}(\lambda)$ does not contain the zero vector.
A3: $\mathrm{Eig}(\lambda)$ is not a vector space.
A4: $\lambda \in \mathrm{Eig}(\lambda)$.
Q2: Consider the matrix $A \in \mathbb{C}^{n \times n}$. If $\lambda$ is an eigenvalue of $A$, how can you calculate the eigenspace $\mathrm{Eig}(\lambda)$?
A1: Do the Gaussion elimination for $(A - \lambda \mathbb{1})x = 0$.
A2: Do the Gaussion elimination for $(A + \lambda \mathbb{1})x = 0$.
A3: Do the Gaussion elimination for $A x = 0$.
-
Last update: 2024-10