• Title: Recipe for Calculating Eigenvectors

  • Series: Linear Algebra

  • Chapter: Eigenvalues and similar things

  • YouTube-Title: Linear Algebra 62 | Recipe for Calculating Eigenvectors

  • Bright video: https://youtu.be/TyxlXwiQfHk

  • Dark video: https://youtu.be/iY23sjFeG_Y

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la62_sub_eng.srt missing

  • Timestamps

    00:00 Intro

    00:50 Algebraic and geometric multiplicities

    01:33 Recipe

    06:09 3x3 example

    06:31 Step 1: eigenvalues

    09:17 Step 2: eigenspaces

    14:50 Step 3: eigenvectors

    16:02 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Consider the matrix $A \in \mathbb{C}^{n \times n}$. What is correct for the eigenspace $\mathrm{Eig}(\lambda)$.

    A1: If $\lambda$ is an eigenvalue, the eigenspace is at least one-dimensional.

    A2: $\mathrm{Eig}(\lambda)$ does not contain the zero vector.

    A3: $\mathrm{Eig}(\lambda)$ is not a vector space.

    A4: $\lambda \in \mathrm{Eig}(\lambda)$.

    Q2: Consider the matrix $A \in \mathbb{C}^{n \times n}$. If $\lambda$ is an eigenvalue of $A$, how can you calculate the eigenspace $\mathrm{Eig}(\lambda)$?

    A1: Do the Gaussion elimination for $(A - \lambda \mathbb{1})x = 0$.

    A2: Do the Gaussion elimination for $(A + \lambda \mathbb{1})x = 0$.

    A3: Do the Gaussion elimination for $A x = 0$.

  • Last update: 2024-10

  • Back to overview page