-
Title: Adjoint
-
Series: Linear Algebra
-
Chapter: Eigenvalues and similar things
-
YouTube-Title: Linear Algebra 59 | Adjoint
-
Bright video: https://youtu.be/92SYFdjYsfQ
-
Dark video: https://youtu.be/ozUjXKQnJCU
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la59_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $A \in \mathbb{C}^{n \times m}$ but each entry is actually a real number. What is always correct?
A1: $ A^* = A^T $
A2: $ A^* = A $
A3: $ A^* = - A^T $
A4: $ A^* = - A $
Q2: Consider the vector space $\mathbb{C}^2$ with the standard inner product $\langle \cdot, \cdot \rangle$. What is correct?
A1: $ \langle x, y \rangle = x^\ast y $
A2: $ \langle x, y \rangle = x^T y $
A3: $ \langle x, y \rangle = x y $
A4: $ \langle x, A y \rangle = x A^\ast y $
A5: $ \langle x, y \rangle = y -x $
Q3: Consider the a matrix $A \in \mathbb{C}^{n \times n}$ with spectrum given by $i, 1, 2, e^i$. What is the spectrum of the adjoint $A^\ast$?
A1: ${ - i, 1, 2, e^{-i} }$
A2: ${ 1, 2 }$
A3: ${ i, 1, 2, e^{i} }$
A4: ${ 0 }$
-
Last update: 2024-10