-
Title: Complex Vectors and Complex Matrices
-
Series: Linear Algebra
-
Chapter: Eigenvalues and similar things
-
YouTube-Title: Linear Algebra 58 | Complex Vectors and Complex Matrices
-
Bright video: https://youtu.be/hwpdWVu9pk8
-
Dark video: https://youtu.be/xf4O4P2sJjo
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la58_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $\binom{2}{i} \in \mathbb{C}^2$. What is the result after scaling this vector with the factor $2+i \in \mathbb{C}$?
A1: $ \binom{4+2i}{-1 + 2i} $
A2: $ \binom{2+2i}{1 + 2i} $
A3: $ \binom{2+4i}{1 - 4i} $
A4: $ \binom{4}{2i} $
Q2: Consider the vector space $\mathbb{C}^2$ with the standard inner product. What is the result of $\langle \binom{i}{1} , \binom{1}{-i}\rangle$?
A1: $ -2 i $
A2: $ 4 i $
A3: $ i $
A4: $ \sqrt{2} $
A5: $ \sqrt{2} i $
Q3: Consider the vector space $\mathbb{C}^2$ with the standard inner product. Are the two vectors $\binom{1}{i}$ and $\binom{1}{-i}$ orthogonal?
A1: Yes, they are.
A2: No, the inner product is $2$.
A3: No, the inner product is $-2$.
A4: One needs more information.
-
Last update: 2024-10