-
Title: Geometric Multiplicity
-
Series: Linear Algebra
-
Chapter: Eigenvalues and similar things
-
YouTube-Title: Linear Algebra 56 | Geometric Multiplicity
-
Bright video: https://youtu.be/Pn3K2wSDc1k
-
Dark video: https://youtu.be/qcuDtwu_zL4
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la56_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $A \in \mathbb{R}^{3 \times 3}$ be a square matrix with $$ A = \begin{pmatrix} 2 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 2 \end{pmatrix} $$ What is geometric multiplicity of the eigenvalue $2$?
A1: 3
A2: 0
A3: 1
A4: 2
Q2: Let $A \in \mathbb{R}^{3 \times 3}$ be a square matrix with $$ A = \begin{pmatrix} 2 & 1 & 1 \ 0 & 2 & 1 \ 0 & 0 & 2 \end{pmatrix} $$ What is geometric multiplicity of the eigenvalue $2$?
A1: 1
A2: 0
A3: 3
A4: 2
Q3: Let $A \in \mathbb{R}^{2 \times 2}$ with eigenvalue $5$ and $7$. Which of the following claims for the geometric multiplicity is the only possible one?
A1: $\gamma(5) = \gamma(7) = 1$
A2: $\gamma(5) + \gamma(7) = 1$
A3: $\gamma(5) + \gamma(7) = 3$
A4: $\gamma(5) = 2$
A5: $\gamma(7) = 0$
-
Last update: 2024-10