• Title: Characteristic Polynomial

  • Series: Linear Algebra

  • Chapter: Eigenvalues and similar things

  • YouTube-Title: Linear Algebra 54 | Characteristic Polynomial

  • Bright video: https://youtu.be/Pt_p_BOsAsA

  • Dark video: https://youtu.be/CgmJeDZSLMY

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la54_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. What is the correct definition for the characteristic polynomial?

    A1: $\lambda \mapsto \det(A - \lambda \mathbf{1} )$

    A2: $\lambda \mapsto \det(A + \lambda \mathbf{1} )$

    A3: $\lambda \mapsto \det( \lambda A - \mathbf{1} )$

    A4: $\lambda \mapsto \det( \lambda A + \mathbf{1} )$

    Q2: Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. What is not correct for the characteristic polynomial $p_A(\lambda) = \det(A - \lambda \mathbf{1} )$?

    A1: The leading coefficient of $p_A$ is always 1.

    A2: $p_A$ is a polynomial of degree $n$

    A3: $p_A(0) = \det(A)$

    A4: $p_A(\lambda) = (-1)^n \lambda^n + \cdots + c_1 \lambda + c_0 $

    Q3: Let $A \in \mathbb{R}^{2 \times 2}$ be a square matrix given by $\begin{pmatrix} 2 & 1 \ 1 & 3 \end{pmatrix}$. What is the characteristic polynomial $p_A(\lambda) = \det(A - \lambda \mathbf{1} )$ in this case?

    A1: $p_A(\lambda) = (2 - \lambda )(3 - \lambda ) - 1$

    A2: $p_A(\lambda) = (2 - \lambda )(3 - \lambda ) + 1$

    A3: $p_A(\lambda) = (2 - \lambda )(3 - \lambda ) $

    A4: $p_A(\lambda) = (2 - \lambda )(3 - \lambda ) - (1-\lambda)(1-\lambda)$

    A5: $p_A(\lambda) = (2 - \lambda )(1 - \lambda ) - 3$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?