• Title: Cramer’s Rule

  • Series: Linear Algebra

  • Chapter: Determinants

  • YouTube-Title: Linear Algebra 52 | Cramer’s Rule

  • Bright video: https://youtu.be/clVE4SXy3EA

  • Dark video: https://youtu.be/BXcueJ7EyM4

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la52_sub_eng.srt missing

  • Timestamps

    00:00 Intro

    01:05 Determinant in two Dimensions

    02:10 Determinant and singular matrices

    02:30 Proposition for non-singular matrices

    04:41 Cramer’s Rule

    07:30 Proof of Cramer’s Rule

    12:27 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with $\det(A) = 0$. Which claim is not correct?

    A1: The columns of $A$ are linearly independent.

    A2: The rows of $A$ are linearly dependent.

    A3: $\mathrm{rank}(A) < n $

    A4: $\mathrm{Ker}(A) \neq { 0 }$

    A5: $A$ is not invertible.

    A6: $A \mathbf{x} = \mathbf{b}$ has either no solution or infinitely many.

    Q2: Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with $\det(A) \neq 0$. Which claim is correct?

    A1: $A \mathbf{x} = \mathbf{b}$ has a unique solution for every right-hand side $\mathbf{b}$.

    A2: The columns of $A$ are linearly dependent.

    A3: $\mathrm{rank}(A) < n $

    A4: $\mathrm{Ker}(A) \neq { 0 }$

    A5: $A$ is not invertible.

    Q3: Let $A = \begin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ be a square matrix with $\det(A) \neq 0$. What is the second component of the solution of $A \mathbf{x} = \begin{pmatrix} b_1 \ b_2 \end{pmatrix}$?

    A1: $x_2 = \frac{\det \begin{pmatrix} a_{11} & b_1 \ a_{21} & b_2 \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}}$

    A2: $x_2 = \frac{\det \begin{pmatrix} b_1 & a_{21} \ a_{21} & b_2 \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}}$

    A3: $x_2 = \frac{\det \begin{pmatrix} a_{11} & a_{21} \ a_{21} & b_2 \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}}$

    A4: $x_2 = \frac{\det \begin{pmatrix} a_{11} & a_{21} \ a_{21} & b_2 \end{pmatrix}}{\det \begin{pmatrix} b_1 & b_2 \ a_{21} & a_{22} \end{pmatrix}}$

    A5: $A$ is not invertible.

  • Last update: 2024-10

  • Back to overview page