• Title: Leibniz Formula for Determinants

  • Series: Linear Algebra

  • Chapter: Determinants

  • YouTube-Title: Linear Algebra 46 | Leibniz Formula for Determinants

  • Bright video: https://youtu.be/iClIgDt55lM

  • Dark video: https://youtu.be/2ddRZsBdzJc

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la46_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is the correct Leibniz formula for the determinant of the matrix $$ \begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{pmatrix} $$ with real entries?

    A1: $$ \sum_{(j_1, j_2, j_3) \in S_3} \mathrm{sgn}( (j_1, j_2, j_3) ) a_{j_1,1 } a_{j_2,2 } a_{j_3 ,3 } $$

    A2: $$ \sum_{(j_1, j_2, j_3) \in S_3} \mathrm{sgn}( (j_1, j_2, j_3) ) a_{j_1,3 } a_{j_2,2 } a_{j_3 ,1 } $$

    A3: $$ \sum_{(j_1, j_2, j_3) \in S_3} \mathrm{sgn}( (j_1, j_2, j_3) ) a_{j_1,3 } a_{j_3 ,1 } $$

    A4: $$ \sum_{(j_1, j_2, j_3) \in S_3} (-1 )^{n} a_{j_1,1 } a_{j_3 ,2 } a_{j_2 ,3 } $$

    Q2: What is the signum of the permutation $(1,2,3,4) \leadsto (1,4,3,2)$?

    A1: $-1$

    A2: $+1$

    A3: $0$

    A4: One needs more information.

  • Last update: 2024-10

  • Back to overview page