-
Title: Leibniz Formula for Determinants
-
Series: Linear Algebra
-
Chapter: Determinants
-
YouTube-Title: Linear Algebra 46 | Leibniz Formula for Determinants
-
Bright video: https://youtu.be/iClIgDt55lM
-
Dark video: https://youtu.be/2ddRZsBdzJc
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la46_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the correct Leibniz formula for the determinant of the matrix $$ \begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{pmatrix} $$ with real entries?
A1: $$ \sum_{(j_1, j_2, j_3) \in S_3} \mathrm{sgn}( (j_1, j_2, j_3) ) a_{j_1,1 } a_{j_2,2 } a_{j_3 ,3 } $$
A2: $$ \sum_{(j_1, j_2, j_3) \in S_3} \mathrm{sgn}( (j_1, j_2, j_3) ) a_{j_1,3 } a_{j_2,2 } a_{j_3 ,1 } $$
A3: $$ \sum_{(j_1, j_2, j_3) \in S_3} \mathrm{sgn}( (j_1, j_2, j_3) ) a_{j_1,3 } a_{j_3 ,1 } $$
A4: $$ \sum_{(j_1, j_2, j_3) \in S_3} (-1 )^{n} a_{j_1,1 } a_{j_3 ,2 } a_{j_2 ,3 } $$
Q2: What is the signum of the permutation $(1,2,3,4) \leadsto (1,4,3,2)$?
A1: $-1$
A2: $+1$
A3: $0$
A4: One needs more information.
-
Last update: 2024-10