-
Title: Determinant is a Volume Measure
-
Series: Linear Algebra
-
Chapter: Determinants
-
YouTube-Title: Linear Algebra 45 | Determinant is a Volume Measure
-
Bright video: https://youtu.be/8pExr4wiZJo
-
Dark video: https://youtu.be/liDIaNGeaMM
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la45_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider a $3$-dimensional volume function $\mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w})$. Which operation is correct?
A1: $$\mathrm{vol}_3(\mathbf{u}, 2\mathbf{v}, \mathbf{w}) = 2 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$
A2: $$\mathrm{vol}_3(\mathbf{u}, \mathbf{v} + \mathbf{u}, \mathbf{w}) = 2 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$
A3: $$\mathrm{vol}_3(2 \mathbf{u}, 2 \mathbf{v}, 2 \mathbf{w}) = 2 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$
A4: $$\mathrm{vol}_3(2 \mathbf{u}, 2 \mathbf{v}, 2 \mathbf{w}) = 4 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$
Q2: Consider a $3$-dimensional volume function $\mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w})$. Which operation is correct?
A1: $$\mathrm{vol}_3(\mathbf{u}, \mathbf{v} + \mathbf{u} +\mathbf{w}, \mathbf{w}) = \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$
A2: $$\mathrm{vol}_3(\mathbf{u}, \mathbf{v} + \mathbf{u}, \mathbf{w}) = 2 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$
A3: $$\mathrm{vol}_3(2 \mathbf{u}, \mathbf{v}, 2 \mathbf{w}) = \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$
A4: $$\mathrm{vol}_3(2 \mathbf{u}, 2 \mathbf{v}, 2 \mathbf{w}) = 4 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$
Q3: Consider the two-dimensional volume form $\mathrm{vol}_2(\mathbf{u}, \mathbf{v})$. What is the correct formula to calculate it?
A1: $\mathrm{vol}_2(\mathbf{u}, \mathbf{v}) = u_1 v_2 - v_1 u_2$
A2: $\mathrm{vol}_2(\mathbf{u}, \mathbf{v}) = u_2 v_2 - v_1 u_1$
A3: $\mathrm{vol}_2(\mathbf{u}, \mathbf{v}) = u_1 v_1 - v_2 u_2$
A4: $\mathrm{vol}_2(\mathbf{u}, \mathbf{v}) = u_2 v_1 - v_2 u_1$
-
Last update: 2024-10