• Title: Determinant is a Volume Measure

  • Series: Linear Algebra

  • Chapter: Determinants

  • YouTube-Title: Linear Algebra 45 | Determinant is a Volume Measure

  • Bright video: https://youtu.be/8pExr4wiZJo

  • Dark video: https://youtu.be/liDIaNGeaMM

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la45_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Consider a $3$-dimensional volume function $\mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w})$. Which operation is correct?

    A1: $$\mathrm{vol}_3(\mathbf{u}, 2\mathbf{v}, \mathbf{w}) = 2 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$

    A2: $$\mathrm{vol}_3(\mathbf{u}, \mathbf{v} + \mathbf{u}, \mathbf{w}) = 2 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$

    A3: $$\mathrm{vol}_3(2 \mathbf{u}, 2 \mathbf{v}, 2 \mathbf{w}) = 2 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$

    A4: $$\mathrm{vol}_3(2 \mathbf{u}, 2 \mathbf{v}, 2 \mathbf{w}) = 4 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$

    Q2: Consider a $3$-dimensional volume function $\mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w})$. Which operation is correct?

    A1: $$\mathrm{vol}_3(\mathbf{u}, \mathbf{v} + \mathbf{u} +\mathbf{w}, \mathbf{w}) = \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$

    A2: $$\mathrm{vol}_3(\mathbf{u}, \mathbf{v} + \mathbf{u}, \mathbf{w}) = 2 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$

    A3: $$\mathrm{vol}_3(2 \mathbf{u}, \mathbf{v}, 2 \mathbf{w}) = \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$

    A4: $$\mathrm{vol}_3(2 \mathbf{u}, 2 \mathbf{v}, 2 \mathbf{w}) = 4 \cdot \mathrm{vol}_3(\mathbf{u}, \mathbf{v}, \mathbf{w}) $$

    Q3: Consider the two-dimensional volume form $\mathrm{vol}_2(\mathbf{u}, \mathbf{v})$. What is the correct formula to calculate it?

    A1: $\mathrm{vol}_2(\mathbf{u}, \mathbf{v}) = u_1 v_2 - v_1 u_2$

    A2: $\mathrm{vol}_2(\mathbf{u}, \mathbf{v}) = u_2 v_2 - v_1 u_1$

    A3: $\mathrm{vol}_2(\mathbf{u}, \mathbf{v}) = u_1 v_1 - v_2 u_2$

    A4: $\mathrm{vol}_2(\mathbf{u}, \mathbf{v}) = u_2 v_1 - v_2 u_1$

  • Last update: 2024-10

  • Back to overview page