• Title: Row Echelon Form

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 40 | Row Echelon Form

  • Bright video: https://youtu.be/nRXt9zUNLK4

  • Dark video: https://youtu.be/kCp7cTwli0M

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la40_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: How many pivots does the following row echelon form have? $$ \left( \begin{array}{cccc}1 & 0 & 3 & 0 \ 0 & 3 & 1 & 0 \ 0 & 0 & 1 & 1 \ \end{array} \right) $$

    A1: $3$

    A2: $1$

    A3: $0$

    A4: $2$

    A5: $4$

    Q2: Is the following matrix in row echelon form? $$ \left( \begin{array}{cccc}1 & 0 & 3 & 0 \ 0 & 3 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 \ \end{array} \right) $$

    A1: No, the zero-row is not at the bottom of the matrix.

    A2: No, we need 5 pivots.

    A3: Yes and we have 3 pivots.

    A4: Yes, for each row the first non-zero is strictly to the right of the first non-zero entry of the row above.

    Q3: What are the free variables for this row echelon form? $$ \left( \begin{array}{cccc}1 & 0 & 3 & 0 \ 0 & 3 & 1 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{array} \right) $$

    A1: There are none.

    A2: All variables are free variables.

    A3: $x_1, x_2$

    A4: Only $x_1$

    A5: Only $x_4$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?