-
Title: Row Echelon Form
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 40 | Row Echelon Form
-
Bright video: https://youtu.be/nRXt9zUNLK4
-
Dark video: https://youtu.be/kCp7cTwli0M
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la40_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: How many pivots does the following row echelon form have? $$ \left( \begin{array}{cccc}1 & 0 & 3 & 0 \ 0 & 3 & 1 & 0 \ 0 & 0 & 1 & 1 \ \end{array} \right) $$
A1: $3$
A2: $1$
A3: $0$
A4: $2$
A5: $4$
Q2: Is the following matrix in row echelon form? $$ \left( \begin{array}{cccc}1 & 0 & 3 & 0 \ 0 & 3 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 \ \end{array} \right) $$
A1: No, the zero-row is not at the bottom of the matrix.
A2: No, we need 5 pivots.
A3: Yes and we have 3 pivots.
A4: Yes, for each row the first non-zero is strictly to the right of the first non-zero entry of the row above.
Q3: What are the free variables for this row echelon form? $$ \left( \begin{array}{cccc}1 & 0 & 3 & 0 \ 0 & 3 & 1 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{array} \right) $$
A1: There are none.
A2: All variables are free variables.
A3: $x_1, x_2$
A4: Only $x_1$
A5: Only $x_4$
-
Last update: 2024-10