-
Title: Solving Systems of Linear Equations (Introduction)
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 36 | Solving Systems of Linear Equations (Introduction)
-
Bright video: https://youtu.be/NA9WXj2sYGA
-
Dark video: https://youtu.be/bOirYo1OjD8
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la36_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the solution set of the linear equation $2x_1 - x_2 = 0$ in $\mathbb{R}^2$?
A1: ${ \mathbf{x} \in \mathbb{R}^2 \mid 2 x_1 = x_2 } $
A2: ${ \mathbf{x} \in \mathbb{R}^2 \mid x_1 = 2 x_2 } $
A3: ${ \mathbf{x} \in \mathbb{R}^2 \mid x_1 = 0 } $
A4: ${ \mathbf{x} \in \mathbb{R}^2 \mid x_1 = \frac{1}{2}, x_2 = 1 } $
A5: ${ \mathbf{x} \in \mathbb{R}^2 \mid x_1 = x_2 } $
Q2: What is the solution set for the system $$ \begin{matrix} x_1 + x_2 = 1 \ x_1 - x_2 = 1 \end{matrix} $$
A1: $\left{ \begin{pmatrix} 1 \ 0 \end{pmatrix} \right}$
A2: $\left{ \begin{pmatrix} 0 \ 1 \end{pmatrix} \right}$
A3: ${ \mathbf{x} \in \mathbb{R}^2 \mid x_1 = 1 } $
A4: ${ \mathbf{x} \in \mathbb{R}^2 \mid x_2 = 0 } $
A5: $\emptyset$
Q3: What is the solution set for the system $$ \begin{matrix} x_1 + 2 x_2 = 0 \ x_1 + 2 x_2 = 1 \end{matrix} $$
A1: $\emptyset$
A2: $\left{ \begin{pmatrix} 0 \ 1 \end{pmatrix} \right}$
A3: ${ \mathbf{x} \in \mathbb{R}^2 \mid x_1 = 1 } $
A4: ${ \mathbf{x} \in \mathbb{R}^2 \mid x_2 = 0 } $
A5: $\left{ \begin{pmatrix} \frac{1}{2} \ 1 \end{pmatrix} \right}$
-
Last update: 2024-10