• Title: Rank-Nullity Theorem

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 35 | Rank-Nullity Theorem

  • Bright video: https://youtu.be/Ia6J9uwGWgw

  • Dark video: https://youtu.be/jPyxiNY7a88

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la35_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is the correct definition for the rank of a matrix $A \in \mathbb{R}^{m\times n}$?

    A1: $\mathrm{rank}(A) = \mathrm{dim}\Big({ A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n } \Big) $

    A2: $\mathrm{rank}(A) = \mathrm{dim}\Big( { \mathbf{x} \mid A \mathbf{x} \in \mathbb{R}^m } \Big)$

    A3: $\mathrm{rank}(A) = \mathrm{dim} \Big( { \mathbf{y} \mid \mathbf{y} \in \mathbb{R}^m } \Big)$

    A4: $\mathrm{rank}(A) = \mathrm{dim} \Big( { A^T \mathbf{x} \mid A \mathbf{x} \in \mathbb{R}^n } \Big)$

    A5: $\mathrm{rank}(A) = \mathrm{dim} \Big( { \mathbf{x} \in \mathbb{R}^n \mid A \mathbf{x} = 0 }\Big)$

    Q2: What is the correct formulation of the rank-nullity theorem for a matrix $A \in \mathbb{R}^{m\times n}$?

    A1: $\mathrm{dim} \Big( \mathrm{Ker}(A) \Big) + \mathrm{dim} \Big( \mathrm{Ran}(A) \Big) = n$

    A2: $\mathrm{dim} \Big( \mathrm{Ker}(A) \Big) + \mathrm{dim} \Big( \mathrm{Ran}(A) \Big) = m$

    A3: $\mathrm{dim} \Big( \mathrm{Ker}(A) \Big) + \mathrm{dim} \Big( \mathrm{Ran}(A) \Big) + n = 0$

    A4: $\mathrm{dim} \Big( \mathrm{Ker}(A) \Big) + \mathrm{dim} \Big( \mathrm{Ran}(A) \Big) = n-m$

    Q3: What is the rank of the matrix $\begin{pmatrix} 2 & 1 \ 0 & 0 \end{pmatrix}$?

    A1: $1$

    A2: $0$

    A3: $2$

    A4: $3$

    Q4: Let $A \in \mathbb{R}^{4 \times 3}$ be matrix with rank $1$. What is the dimension of the kernel of $A$?

    A1: $2$

    A2: $0$

    A3: $1$

    A4: $3$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?