• Title: Range and Kernel of a Matrix

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 34 | Range and Kernel of a Matrix

  • Bright video: https://youtu.be/yWSwuk1kiyE

  • Dark video: https://youtu.be/4mv_wxw4u6s

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la34_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is the correct definition for the range of a matrix $A \in \mathbb{R}^{m\times n}$?

    A1: $\mathrm{Ran}(A) = { A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n }$

    A2: $\mathrm{Ran}(A) = { \mathbf{x} \mid A \mathbf{x} \in \mathbb{R}^m }$

    A3: $\mathrm{Ran}(A) = { \mathbf{y} \mid \mathbf{y} \in \mathbb{R}^m }$

    A4: $\mathrm{Ran}(A) = { A^T \mathbf{x} \mid A \mathbf{x} \in \mathbb{R}^n }$

    A5: $\mathrm{Ran}(A) = { \mathbf{x} \in \mathbb{R}^n \mid A \mathbf{x} = 0 }$

    Q2: What is the correct definition for the kernel of a matrix $A \in \mathbb{R}^{m\times n}$?

    A1: $\mathrm{Ker}(A) = { \mathbf{x} \in \mathbb{R}^n \mid A \mathbf{x} = 0 }$

    A2: $\mathrm{Ker}(A) = { \mathbf{x} \in \mathbb{R}^n \mid A \mathbf{x} = \mathbf{y} }$

    A3: $\mathrm{Ker}(A) = { A^{-1} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n }$

    A4: $\mathrm{Ker}(A) = { A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n }$

    Q3: What is not the range of the matrix $\begin{pmatrix} 2 & 1 \ 0 & 0 \end{pmatrix}$

    A1: $\mathrm{Ran}(A) = \mathrm{Span}( \begin{pmatrix} 2 \ 1 \end{pmatrix})$

    A2: $\mathrm{Ran}(A) = \mathrm{Span}( \mathbf{e}_1 )$

    A3: $\mathrm{Ran}(A) = \mathrm{Span}( \begin{pmatrix} 1 \ 0 \end{pmatrix} )$

    A4: $\mathrm{Ran}(A) = \mathrm{Span}(\begin{pmatrix} 2 \ 0 \end{pmatrix}, \begin{pmatrix} 1 \ 0 \end{pmatrix} )$

  • Last update: 2024-10

  • Back to overview page