-
Title: Range and Kernel of a Matrix
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 34 | Range and Kernel of a Matrix
-
Bright video: https://youtu.be/yWSwuk1kiyE
-
Dark video: https://youtu.be/4mv_wxw4u6s
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la34_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the correct definition for the range of a matrix $A \in \mathbb{R}^{m\times n}$?
A1: $\mathrm{Ran}(A) = { A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n }$
A2: $\mathrm{Ran}(A) = { \mathbf{x} \mid A \mathbf{x} \in \mathbb{R}^m }$
A3: $\mathrm{Ran}(A) = { \mathbf{y} \mid \mathbf{y} \in \mathbb{R}^m }$
A4: $\mathrm{Ran}(A) = { A^T \mathbf{x} \mid A \mathbf{x} \in \mathbb{R}^n }$
A5: $\mathrm{Ran}(A) = { \mathbf{x} \in \mathbb{R}^n \mid A \mathbf{x} = 0 }$
Q2: What is the correct definition for the kernel of a matrix $A \in \mathbb{R}^{m\times n}$?
A1: $\mathrm{Ker}(A) = { \mathbf{x} \in \mathbb{R}^n \mid A \mathbf{x} = 0 }$
A2: $\mathrm{Ker}(A) = { \mathbf{x} \in \mathbb{R}^n \mid A \mathbf{x} = \mathbf{y} }$
A3: $\mathrm{Ker}(A) = { A^{-1} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n }$
A4: $\mathrm{Ker}(A) = { A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n }$
Q3: What is not the range of the matrix $\begin{pmatrix} 2 & 1 \ 0 & 0 \end{pmatrix}$
A1: $\mathrm{Ran}(A) = \mathrm{Span}( \begin{pmatrix} 2 \ 1 \end{pmatrix})$
A2: $\mathrm{Ran}(A) = \mathrm{Span}( \mathbf{e}_1 )$
A3: $\mathrm{Ran}(A) = \mathrm{Span}( \begin{pmatrix} 1 \ 0 \end{pmatrix} )$
A4: $\mathrm{Ran}(A) = \mathrm{Span}(\begin{pmatrix} 2 \ 0 \end{pmatrix}, \begin{pmatrix} 1 \ 0 \end{pmatrix} )$
-
Last update: 2024-10