• Title: Transpose and Inner Product

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 33 | Transpose and Inner Product

  • Bright video: https://youtu.be/YCs_1qYxs2Q

  • Dark video: https://youtu.be/sVCRIH3a1ro

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la33_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Which equation is correct for the matrix $A = \begin{pmatrix} 2 & 9 \ 9 & -2 \end{pmatrix}$ and the standard inner product?

    A1: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \langle A \mathbf{y}, \mathbf{x} \rangle $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n $.

    A2: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \langle \mathbf{x}, A \mathbf{y} \rangle $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n $.

    A3: $ \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, A^{-1} \mathbf{y} \rangle $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n $.

    A4: $ \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, A^T \mathbf{y} \rangle $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n $.

    Q2: Let $A$ be a matrix and $A^T$ be the transpose. What is correct for the standard inner product?

    A1: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \mathbf{y}^T A \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} $.

    A2: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \mathbf{y} A^T \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} $.

    A3: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \mathbf{y} A^T \mathbf{x}^T$ for all $\mathbf{x}, \mathbf{y} $.

    A4: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \mathbf{y} A \mathbf{x}^T$ for all $\mathbf{x}, \mathbf{y} $.

    Q3: What is an alternative definition for the transpose of $A$?

    A1: $A^T$ is the only matrix $B$ that satisfies $\langle \mathbf{y}, A \mathbf{x} \rangle = \langle B \mathbf{y}, \mathbf{x} \rangle$.

    A2: $A^T$ is the only matrix $B$ that satisfies $\langle \mathbf{y}, A \mathbf{x} \rangle = \langle B^{-1} \mathbf{y}, \mathbf{x} \rangle$.

    A3: $A^T$ is the only matrix $B$ that satisfies $\langle \mathbf{y}, A \mathbf{x} \rangle = \langle \mathbf{y}, B \mathbf{x} \rangle$.

  • Last update: 2024-10

  • Back to overview page