-
Title: Transpose and Inner Product
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 33 | Transpose and Inner Product
-
Bright video: https://youtu.be/YCs_1qYxs2Q
-
Dark video: https://youtu.be/sVCRIH3a1ro
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la33_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Which equation is correct for the matrix $A = \begin{pmatrix} 2 & 9 \ 9 & -2 \end{pmatrix}$ and the standard inner product?
A1: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \langle A \mathbf{y}, \mathbf{x} \rangle $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n $.
A2: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \langle \mathbf{x}, A \mathbf{y} \rangle $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n $.
A3: $ \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, A^{-1} \mathbf{y} \rangle $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n $.
A4: $ \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, A^T \mathbf{y} \rangle $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n $.
Q2: Let $A$ be a matrix and $A^T$ be the transpose. What is correct for the standard inner product?
A1: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \mathbf{y}^T A \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} $.
A2: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \mathbf{y} A^T \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} $.
A3: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \mathbf{y} A^T \mathbf{x}^T$ for all $\mathbf{x}, \mathbf{y} $.
A4: $ \langle \mathbf{y}, A \mathbf{x} \rangle = \mathbf{y} A \mathbf{x}^T$ for all $\mathbf{x}, \mathbf{y} $.
Q3: What is an alternative definition for the transpose of $A$?
A1: $A^T$ is the only matrix $B$ that satisfies $\langle \mathbf{y}, A \mathbf{x} \rangle = \langle B \mathbf{y}, \mathbf{x} \rangle$.
A2: $A^T$ is the only matrix $B$ that satisfies $\langle \mathbf{y}, A \mathbf{x} \rangle = \langle B^{-1} \mathbf{y}, \mathbf{x} \rangle$.
A3: $A^T$ is the only matrix $B$ that satisfies $\langle \mathbf{y}, A \mathbf{x} \rangle = \langle \mathbf{y}, B \mathbf{x} \rangle$.
-
Last update: 2024-10