-
Title: Transposition for Matrices
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 32 | Transposition for Matrices
-
Bright video: https://youtu.be/QzwCtPnOBJY
-
Dark video: https://youtu.be/1Kgzsnq0hUo
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la32_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the transpose of the matrix $ A = \begin{pmatrix} 2 & 3 \ 4 & 5 \end{pmatrix} $.
A1: $$ A^T = \begin{pmatrix} 2 & 3 \ 4 & 5 \end{pmatrix} $$
A2: $$ A^T = \begin{pmatrix} 2 & 4 \ 3 & 5 \end{pmatrix} $$
A3: $$ A^T = \begin{pmatrix} 5 & 3 \ 4 & 2 \end{pmatrix} $$
A4: $$ A^T = \begin{pmatrix} 4 & 3 \ 2 & 5 \end{pmatrix} $$
Q2: Let $A$ be a matrix and $A^T$ be the transpose. In which case do we have $A = A^T$?
A1: We have this for square matrices that are symmetric.
A2: We have this for all matrices.
A3: We have this for square matricses.
A4: We have this for $A = \begin{pmatrix} 2 & 1 \ 0 & 0 \end{pmatrix} $
A5: It’s not possible to find matrices with this property.
-
Last update: 2024-10