-
Title: Inverses of Linear Maps are Linear
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 31 | Inverses of Linear Maps are Linear
-
Bright video: https://youtu.be/u6IrirgCuTw
-
Dark video: https://youtu.be/zcf0kmUJMU4
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la31_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a linear map. Is $f$ invertible?
A1: Yes, it is!
A2: No, there are examples that are not invertible.
A3: No, all linear maps are not invertible.
Q2: Let $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a bijective linear map. Is $f^{-1}$ also linear?
A1: Yes, it is.
A2: No, there are counterexamples.
A3: No, never.
A4: Only if $f=0$.
-
Last update: 2024-10