• Title: Identity and Inverses

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 29 | Identity and Inverses

  • Bright video: https://youtu.be/JUimgJ9E4-c

  • Dark video: https://youtu.be/YvlnqA2gXQk

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la29_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is the identity matrix in $\mathbb{R}^{2 \times 3}$?

    A1: It does not exist.

    A2: $ \pmb1 = \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix}$

    A3: $ \pmb1 = \begin{pmatrix} 1 & 0 \ 0 & 1 \ 0 & 0\end{pmatrix}$

    A4: $ \pmb1 = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$

    A5: $ \pmb1 = \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$

    Q2: Let $\pmb1$ be the identity matrix in $\mathbb{R}^{n \times n}$. What is the map $f_{\pmb1}$?

    A1: The linear map $x \mapsto x$ for all $x \in \mathbb{R}^n$.

    A2: The linear map $x \mapsto 3 x$ for all $x \in \mathbb{R}^n$.

    A3: The map $x \mapsto \langle x, x \rangle x$ for all $x \in \mathbb{R}^n$.

    Q3: Is the matrix $ \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}$ singular?

    A1: No, because $ \begin{pmatrix} 0 & 1 \ 1 & -1 \end{pmatrix}$ is the inverse of the matrix.

    A2: Yes, there is no inverse matrix.

    A3: No, because $ \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}$ is the inverse of the matrix.

    A4: Yes, all matrices in $\mathbb{R}^{2 \times 2}$ are singular.

    A5: One needs more information.

  • Last update: 2024-10

  • Back to overview page