-
Title: Dimension of a Subspace
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 27 | Dimension of a Subspace
-
Bright video: https://youtu.be/8zp7zb5Nalc
-
Dark video: https://youtu.be/Pqi87Stwomw
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la27_sub_eng.srt missing
-
Definitions in the video: dimension of vector space
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $\mathcal{B} = (\mathbf{u}, \mathbf{v})$ be a basis of a subspace $U\subseteq \mathbb{R}^n$. What is the dimension of $U$?
A1: $2$
A2: $0$
A3: $1$
A4: $3$
A5: $4$
Q2: Let $n \geq 3$. Let $U \subseteq \mathbb{R}^n$ be a subspace. Which number can never be the dimension of $U$?
A1: $-1$
A2: $0$
A3: $1$
A4: $n-1$
A5: $n$
A6: $2$
Q3: Let $U = { \mathbf{x} \in \mathbb{R}^2 \mid \langle \mathbf{x} , \binom{2}{1} \rangle = 0}$. What is the dimension of $U$?
A1: $1$
A2: $0$
A3: $-1$
A4: $2$
A5: $\frac{1}{2}$
-
Last update: 2024-10