• Title: Steinitz Exchange Lemma

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 26 | Steinitz Exchange Lemma

  • Bright video: https://youtu.be/d69Bw-n5fvo

  • Dark video: https://youtu.be/OjWEEFASnVo

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la26_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $\mathcal{B} = (\mathbf{u}, \mathbf{v})$ be a basis of a subspace $U\subseteq \mathbb{R}^n$. Which family is also a basis for $U$?

    A1: $(3\mathbf{u}, 4\mathbf{v})$

    A2: $(\mathbf{u}, \mathbf{u})$

    A3: $(\mathbf{u}, -\mathbf{u})$

    A4: $(2\mathbf{v}, -\mathbf{v})$

    A5: $(2\mathbf{v}, 4\mathbf{v})$

    Q2: What is the formulation of Steinitz Exchange Lemma as we have learnt in the video.

    A1: Let $\mathcal{B}$ be a basis of a subspace $U$ with $k$ vectors and $\mathcal{A}$ be a family of $\ell$ linearly independent vectors in $U$. Then one can add $k - \ell$ vectors from $B$ to $\mathcal{A}$ to get a new basis of $U$.

    A2: Let $\mathcal{B}$ be a basis of a subspace $U$ with $k$ vectors and $\mathcal{A}$ be a family of $\ell$ linearly independent vectors in $U$. Then one can remove $k$ vectors from $B$ to $\mathcal{A}$ to get a new basis of $U$.

    A3: Let $\mathcal{B}$ be a basis of a subspace $U$ with $k$ vectors and $\mathcal{A}$ be a family of $\ell$ linearly independent vectors in $U$. Then $\mathcal{A} \cup \mathcal{B}$ is new basis of $U$.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?