-
Title: Coordinates with respect to a Basis
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 25 | Coordinates with respect to a Basis
-
Bright video: https://youtu.be/6cG9CMC89gg
-
Dark video: https://youtu.be/NDDFJRinngk
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la25_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the subspace $U \subseteq \mathbb{R}^3$ spanned by the basis $\mathcal{B} = \Big( \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix}, \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \Big) $. What are the coordinates of the vector $\begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} $ with respect to the basis $\mathcal{B}$?
A1: $\lambda_1 = 0$ and $\lambda_2 = 1$
A2: $\lambda_1 = 2$ and $\lambda_2 = 1$
A3: $\lambda_1 = 1$ and $\lambda_2 = 1$
A4: $\lambda_1 = 4$ and $\lambda_2 = 5$
A5: $\lambda_1 = 0$ and $\lambda_2 = 3$
Q2: Consider the subspace $U \subseteq \mathbb{R}^3$ spanned by the basis $\mathcal{B} = \Big( \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix}, \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \Big) $. What are the coordinates of the vector $\begin{pmatrix} 3 \ 1 \ 3 \end{pmatrix} $ with respect to the basis $\mathcal{B}$?
A1: $\lambda_1 = 1$ and $\lambda_2 = 1$
A2: $\lambda_1 = 2$ and $\lambda_2 = 1$
A3: $\lambda_1 = 0$ and $\lambda_2 = 1$
A4: $\lambda_1 = 4$ and $\lambda_2 = 5$
A5: $\lambda_1 = 0$ and $\lambda_2 = 3$
Q3: Consider the subspace $U \subseteq \mathbb{R}^3$ spanned by the basis $\mathcal{B} = \Big( \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}, \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \Big) $. What are the coordinates of the vector $\begin{pmatrix} 1 \ 5 \ 0 \end{pmatrix} $ with respect to the basis $\mathcal{B}$?
A1: $\lambda_1 = 5$ and $\lambda_2 = 1$
A2: $\lambda_1 = 2$ and $\lambda_2 = 1$
A3: $\lambda_1 = 1$ and $\lambda_2 = 1$
A4: $\lambda_1 = 1$ and $\lambda_2 = 5$
A5: $\lambda_1 = 0$ and $\lambda_2 = 3$
-
Last update: 2024-10