-
Title: Basis of a subspace
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 24 | Basis of a subspace
-
Bright video: https://youtu.be/_XBTqXwPllI
-
Dark video: https://youtu.be/6VZiuEyTQVY
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la24_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the subspace $U \subseteq \mathbb{R}^3$ defined by $U = \mathrm{Span}( \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix} )$. What is not a basis of $U$?
A1: The family given by $ \left( \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix}, \begin{pmatrix} 0 \ 1 \ 3 \end{pmatrix} \right) $
A2: The family given by $ \left( \begin{pmatrix} 4 \ 2 \ 6 \end{pmatrix} \right) $
A3: The family given by $ \left( \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix} \right) $
A4: The family given by $ \left( \frac{1}{5} \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix} \right) $
Q2: Consider the subspace $U \subseteq \mathbb{R}^3$ defined by $U = \mathrm{Span} \left( \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \right)$. What is a basis of $U$?
A1: The family given by $ \left( \begin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}, \begin{pmatrix} -1 \ 1 \ 0 \end{pmatrix} \right) $
A2: The family given by $\left( \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}, \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \right)$
A3: The family given by $ \left( \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \right) $
A4: The family given by $ \left( \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \begin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} \right) $
Q3: Let $(\mathbf{u}, \mathbf{v})$ be a family of vectors in $\mathbb{R}^3$ that are linearly independent. Which claim is correct?
A1: They form a basis of a subspace in $\mathbb{R}^3$.
A2: They form not a basis of a subspace in $\mathbb{R}^3$.
A3: They form a basis of $\mathbb{R}^3$.
A4: One needs more information.
-
Last update: 2024-10