-
Title: Linear Independence (Examples)
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 23 | Linear Independence (Examples)
-
Bright video: https://youtu.be/Xdx0ZG7T648
-
Dark video: https://youtu.be/062Iy-pbGug
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la23_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Is the family $(\mathbf{v})$ consisting of a single vector linearly independent?
A1: Yes, if $ \mathbf{v} \neq 0$.
A2: No, never!
A3: Yes, always!
A4: Yes, if $ \mathbf{v} = 0$.
A5: Yes, if $ \mathbf{v} \in \mathbb{R}^2$.
Q2: Is a family consisting of $(n+1)$-many vectors from $\mathbb{R}^n$ linearly independent?
A1: Yes, if one vector $ \mathbf{v} \neq 0$.
A2: No, never!
A3: Yes, always!
A4: Yes, if one vector $ \mathbf{v} = 0$.
A5: Yes, if $n = 2$.
Q3: Let $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ be a family of vectors in $\mathbb{R}^3$ that are linearly independent. Which claim is not correct?
A1: $ \mathrm{Span}( \mathbf{u}, \mathbf{v}, \mathbf{w} ) = \mathrm{Span}( \mathbf{u}, \mathbf{w} ) $
A2: $ \mathrm{Span}( \mathbf{u}, \mathbf{v}, \mathbf{w} ) = \mathrm{Span}( \mathbf{u}, \mathbf{v}, \mathbf{w} , \mathbf{w} ) $
A3: $ \mathrm{Span}( \mathbf{u}, \mathbf{v}, \mathbf{w} ) = \mathrm{Span}( \mathbf{u}, \mathbf{w} , \mathbf{v} ) $
A4: $ \mathrm{Span}( \mathbf{u}, \mathbf{v}, \mathbf{w} ) = \mathrm{Span}( \mathbf{u}, \mathbf{v} , \mathbf{w} , \mathbf{0} ) $
A5: One needs more information.
-
Last update: 2024-10