-
Title: Linear Independence (Definition)
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 22 | Linear Independence (Definition)
-
Bright video: https://youtu.be/UeHqH1yhoqU
-
Dark video: https://youtu.be/q66L7aw1QyE
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la22_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the correct definition for linear independence of a family $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ of vectors in $\mathbb{R}^n$?
A1: If $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ is a linear combination that results in the zero vector, then we have $\lambda_1 = \lambda_2 = \lambda_3 = 0$.
A2: If $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ is a linear combination that results in the zero vector, then we have $\lambda_1 = \lambda_2 = \lambda_3 \neq 0$.
A3: If $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ is a linear combination for another vector, then we have $\lambda_1 = \lambda_2 = \lambda_3 \neq 0$.
A4: If $\lambda_1 = \lambda_2 = \lambda_3 \neq 0$, then $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ is a linear combination that results in the zero vector.
A5: If $\lambda_1 = \lambda_2 = \lambda_3 = 0$, then $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ is a linear combination that results in the zero vector.
Q2: What is the correct definition for linear dependence of a family $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ of vectors in $\mathbb{R}^n$?
A1: There is a linear combination $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ that results in the zero vector, where $\lambda_1, \lambda_2$ and $\lambda_3$ are not all zero.
A2: If $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ is a linear combination that results in the zero vector, then we have $\lambda_1 = \lambda_2 = \lambda_3 \neq 0$.
A3: There is a linear combination $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ that results in the zero vector, where we have $\lambda_1 = \lambda_2 = \lambda_3 = 0$.
A4: There is a linear combination $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ that results in the zero vector, where we have $\lambda_1 = \lambda_2 = \lambda_3 \neq 0$.
A5: If $\lambda_1 = \lambda_2 = \lambda_3 = 0$, then $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} + \lambda_3 \mathbf{w}$ is a linear combination that results in the zero vector.
-
Last update: 2024-10