• Title: Examples of Linear Maps

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 21 | Examples of Linear Maps

  • Bright video: https://youtu.be/eV7UI_WX54c

  • Dark video: https://youtu.be/vG54BGp9Ikg

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la21_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Consider the linear map $f_A: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $A = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} $. Let $\mathbf{u},\mathbf{v} \in \mathbb{R}^2$ be two vectors that have an angle $\alpha$ between them. What is the angle between the images $f_A(\mathbf{u})$ and $f_A(\mathbf{v})$?

    A1: It’s also $\alpha$.

    A2: It’s $\frac{1}{2}\alpha$.

    A3: It’s $\frac{1}{3}\alpha$.

    A4: It’s $-\alpha$.

    A5: One needs more information.

    A6: It’s $0$.

    Q2: Consider the linear map $f_A: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $A = \begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix} $. Let $\mathbf{u},\mathbf{v} \in \mathbb{R}^2$ be two vectors that have an angle $\alpha$ between them. What is the angle between the images $f_A(\mathbf{u})$ and $f_A(\mathbf{v})$?

    A1: It’s also $\alpha$.

    A2: It’s $\frac{1}{2}\alpha$.

    A3: It’s $\frac{1}{3}\alpha$.

    A4: It’s $-\alpha$.

    A5: One needs more information.

    A6: It’s $0$.

    Q3: Consider the linear map $f_A: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $A = \begin{pmatrix}\cos(\alpha) & -\sin(\alpha) \ \sin(\alpha) & \cos(\alpha) \end{pmatrix} $. Let $\mathbf{u},\mathbf{v} \in \mathbb{R}^2$ be two vectors with a right-angle between them. What is the angle between the images $f_A(\mathbf{u})$ and $f_A(\mathbf{v})$?

    A1: It’s also a right-angle.

    A2: It’s not a right-angle anymore.

    A3: One needs more information.

  • Last update: 2024-10

  • Back to overview page