• Title: Linear maps induce matrices

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 20 | Linear maps induce matrices

  • Bright video: https://youtu.be/9UcgdR_X2Ys

  • Dark video: https://youtu.be/jZqb1RwbCCw

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la20_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear map given by $$f(x,y) = \begin{pmatrix} 2y + 3 x \ 5 x - y \end{pmatrix}$$ What is the corresponding matrix $A$ such that $$f(x,y) = A \binom{x}{y}$$ holds?

    A1: $$ A = \begin{pmatrix} 3 & 2 \ 5 & -1 \end{pmatrix} $$

    A2: $$ A = \begin{pmatrix} 3 & -2 \ -5 & -1 \end{pmatrix} $$.

    A3: $$ A = \begin{pmatrix} 2 & 3 \ 5 & -1 \end{pmatrix} $$

    A4: $$ A = \begin{pmatrix} 2 & 3 \ 5 & 1 \end{pmatrix} $$

    Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear map. Is it possible that $f_A = f_B$ for different matrices $A,B \in \mathbb{R}^{2 \times 2}$.

    A1: No, never.

    A2: Yes, always.

    A3: Only if $f = 0$.

    Q3: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear map. What is the first column of the matrix $A$ such that $f = f_A$?

    A1: $f(e_1)$

    A2: $f(e_2)$

    A3: $f(e_1 + e_2)$

    A4: One needs more information.

  • Last update: 2024-10

  • Back to overview page