-
Title: Linear Maps (Definition)
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 18 | Linear Maps (Definition)
-
Bright video: https://youtu.be/Xi-HknrH6OM
-
Dark video: https://youtu.be/lJnwwbwPE-8
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la18_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is not a property of a linear map $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$?
A1: $f( \mathbf{x} \cdot \mathbf{y} ) = f( \mathbf{x} ) \cdot f( \mathbf{y} ) $
A2: $f( \mathbf{x} + \mathbf{y} ) = f( \mathbf{x} ) + f( \mathbf{y} ) $
A3: $f( \lambda \mathbf{x}) = \lambda f( \mathbf{x} )$
A4: $f( \mathbf{x} + \lambda \mathbf{y} ) = f( \mathbf{x} ) + \lambda f( \mathbf{y} ) $
Q2: Let consider the vector space $X = \mathbb{R}$ and a map $f : X \rightarrow X$. Which of the statements is not correct?
A1: $f(x) = x^2$ is linear.
A2: $f(x) = x$ is linear.
A3: $f(x) = 2 x$ is linear.
A4: $f(x) = 3 x$ is linear.
A5: $f(x) = 0$ is linear.
Q3: Let consider the zero vector space $X = {0}$ and a map $f : X \rightarrow X$. Which of the statements is not correct?
A1: There is a map $f : X \rightarrow X$ that is not linear.
A2: $f(x) = x^2$ is linear.
A3: $f(x) = x$ is linear.
A4: $f(x) = 3 x$ is linear.
A5: $f(x) = 0$ is linear.
-
Last update: 2024-10