-
Title: Matrix Product
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 16 | Matrix Product
-
Bright video: https://youtu.be/8R0BdG9XnAk
-
Dark video: https://youtu.be/RQxqdlqhH-Y
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la16_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $A,B$ be matrices given by $A = \begin{pmatrix} 1 & 2 & 3 \ 0 & 1 & 2 \end{pmatrix} $ and $B = \begin{pmatrix} 1 & 2 \ 1 & 2 \end{pmatrix}$. Which claim is correct?
A1: The matrix product $B A$ is well-defined.
A2: The matrix product $A B$ is well-defined.
A3: The matrix product $A A$ is well-defined.
A4: The matrix product $B B$ is equal to $A$.
Q2: Let $A,B$ be matrices given by $A = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 \ 0 & 1 & 2 \end{pmatrix} $. What is the matrix product $AB$?
A1: $B$
A2: $A$
A3: $\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$
A4: $\begin{pmatrix} 1 & 2 & 2 \ 2 & 1 & 2 \end{pmatrix} $
A5: $0$
Q3: Let $A,B$ be matrices given by $A = \begin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix} $ and . What is the matrix product $AB$?
A1: $\begin{pmatrix} 1 & 1 \ -1 & -1 \end{pmatrix}$
A2: $\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$
A3: $\begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$
A4: $\begin{pmatrix} 1 & 1 \ -1 & 1 \end{pmatrix}$
-
Last update: 2024-10