• Title: Matrix Product

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 16 | Matrix Product

  • Bright video: https://youtu.be/8R0BdG9XnAk

  • Dark video: https://youtu.be/RQxqdlqhH-Y

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la16_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $A,B$ be matrices given by $A = \begin{pmatrix} 1 & 2 & 3 \ 0 & 1 & 2 \end{pmatrix} $ and $B = \begin{pmatrix} 1 & 2 \ 1 & 2 \end{pmatrix}$. Which claim is correct?

    A1: The matrix product $B A$ is well-defined.

    A2: The matrix product $A B$ is well-defined.

    A3: The matrix product $A A$ is well-defined.

    A4: The matrix product $B B$ is equal to $A$.

    Q2: Let $A,B$ be matrices given by $A = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 \ 0 & 1 & 2 \end{pmatrix} $. What is the matrix product $AB$?

    A1: $B$

    A2: $A$

    A3: $\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$

    A4: $\begin{pmatrix} 1 & 2 & 2 \ 2 & 1 & 2 \end{pmatrix} $

    A5: $0$

    Q3: Let $A,B$ be matrices given by $A = \begin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix} $ and . What is the matrix product $AB$?

    A1: $\begin{pmatrix} 1 & 1 \ -1 & -1 \end{pmatrix}$

    A2: $\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$

    A3: $\begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$

    A4: $\begin{pmatrix} 1 & 1 \ -1 & 1 \end{pmatrix}$

  • Last update: 2024-10

  • Back to overview page